Recombinant Human Fructose-1,6-bisphosphatase 1(FBP1)

SAB Signalway Antibody

Catalog No: #AP76876

Package Size: #AP76876-1 20ug #AP76876-2 100ug #AP76876-3 1mg

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	Recombinant Human Fructose-1,6-bisphosphatase 1(FBP1)
Brief Description	Recombinant Protein
Host Species	E.coli
Purification	Greater than 90% as determined by SDS-PAGE.
Immunogen Description	Expression Region:1-338aaSequence Info:Full Length
Other Names	D-fructose-1,6-bisphosphate 1-phosphohydrolase 1
	Liver FBPase
Accession No.	P09467
Uniprot	P09467
GeneID	2203;
Calculated MW	63.7 kDa
Tag Info	N-terminal GST-tagged
Target Sequence	ADQAPFDTDVNTLTRFVMEEGRKARGTGELTQLLNSLCTAVKAISSAVRKAGIAHLYGIAGSTNVTGDQVKKL
	DVLSNDLVMNMLKSSFATCVLVSEEDKHAIIVEPEKRGKYVVCFDPLDGSSNIDCLVSVGTIFGIYRKKSTDEPS
	${\sf EKDALQPGRNLVAAGYALYGSATMLVLAMDCGVNCFMLDPAIGEFILVDKDVKIKKKGKIYSLNEGYARDFDPA}$
	VTEYIQRKKFPPDNSAPYGARYVGSMVADVHRTLVYGGIFLYPANKKSPNGKLRLLYECNPMAYVMEKAGGM
	ATTGKEAVLDVIPTDIHQRAPVILGSPDDVLEFLKVYEKHSAQ
Formulation	Tris-based buffer50% glycerol
Storage	The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability
	of the protein itself.
	Generally, the shelf life of liquid form is 6 months at -20°C,-80°C. The shelf life of lyophilized form is 12 months
	at -20°C,-80°C.Notes:Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for
	up to one week.

Background

Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate in the presence of divalent cations, acting as a rate-limiting enzyme in gluconeogenesis. Plays a role in regulating glucose sensing and insulin secretion of pancreatic beta-cells. Appears to modulate glycerol gluconeogenesis in liver. Important regulator of appetite and adiposity; increased expression of the protein in liver after nutrient excess increases circulating satiety hormones and reduces appetite-stimulating neuropeptides and thus seems to provide a feedback mechanism to limit weight gain.

References

"Activation of the fructose 1,6-bisphosphatase gene by 1,25-dihydroxyvitamin D3 during monocytic differentiation." Solomon D.H., Raynal M.-C., Tejwani G.A., Cayre Y.E.

Proc. Natl. Acad. Sci. U.S.A. 85:6904-6908(1988)Research Topic:Epigenetics and Nuclear Signaling

Note: This product is for in vitro research use only