Recombinant Human KCNJ11

Catalog No: #GP11501

Package Size: #GP11501-1 100ug

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	Recombinant Human KCNJ11
Brief Description	Recombinant Protein
Immunogen Description	Fusion protein corresponding to a region derived from 167-390 amino acids of human potassium
	inwardly-rectifying channel, subfamily J, member 11
Target Name	potassium inwardly-rectifying channel, subfamily J, member 11
Other Names	BIR; HHF2; PHHI; IKATP; TNDM3; KIR6.2
Accession No.	Swissprot:Q14654Gene Accession:BC112358
Uniprot	Q14654
GeneID	3767;
Storage	-20~-80°C, pH 7.6 PBS

Background

Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and is found associated with the sulfonylurea receptor SUR. Mutations in this gene are a cause of familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion. Defects in this gene may also contribute to autosomal dominant non-insulin-dependent diabetes mellitus type II (NIDDM), transient neonatal diabetes mellitus type 3 (TNDM3), and permanent neonatal diabetes mellitus (PNDM). Multiple alternatively spliced transcript variants that encode different protein isoforms have been described for this gene.

References

Note: For in vitro research use only, not for diagnostic or therapeutic use. This product is not a medical device.

Note: This product is for in vitro research use only