Recombinant Human ATP5L

Catalog No: #GP13067

Package Size: #GP13067-1 100ug

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	Recombinant Human ATP5L
Brief Description	Recombinant Protein
Immunogen Description	Fusion protein corresponding to a region derived from 2-103 amino acids of human ATP5L
Target Name	ATP synthase, H+ transporting, mitochondrial Fo complex subunit G
Other Names	ATP5JG
Accession No.	Swissprot:O75964 Gene Accession:BC015128
Uniprot	O75964
GenelD	10632;
Storage	-20~-80°C, pH 7.6 PBS

Background

Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the g subunit of the Fo complex. Alternative splicing results in multiple transcript variants.

References

Note: For in vitro research use only, not for diagnostic or therapeutic use. This product is not a medical device.

Note: This product is for in vitro research use only