PKM1 Conjugated Antibody

Catalog No: #C21577

Package Size: #C21577-AF350 100ul #C21577-AF405 100ul #C21577-AF488 100ul

#C21577-AF555 100ul #C21577-AF594 100ul #C21577-AF647 100ul

#C21577-AF680 100ul #C21577-AF750 100ul #C21577-Biotin 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	PKM1 Conjugated Antibody
Host Species	Rabbit
Clonality	Polyclonal
Species Reactivity	Hu Ms
Specificity	The antibody detects endogenous levels of total PKM1 protein.
Immunogen Description	Peptide sequence around aa. 399~403(V-R-A-S-S) derived from Human PKM1.
Conjugates	Biotin AF350 AF405 AF488 AF555 AF594 AF647 AF680 AF750
Other Names	PKM;PK3;OIP3;PK2
Accession No.	Swiss-Prot#:P14618NCBI Gene ID:5315NCBI mRNA#:NM_182470.1 NCBI Protein#: NP_872270.1
Uniprot	P14618
GeneID	5315;
Excitation Emission	AF350: 346nm/442nm
	AF405: 401nm/421nm
	AF488: 493nm/519nm
	AF555: 555nm/565nm
	AF594: 591nm/614nm
	AF647: 651nm/667nm
	AF680: 679nm/702nm
	AF750: 749nm/775nm
Calculated MW	60
Formulation	0.01M Sodium Phosphate, 0.25M NaCl, pH 7.6, 5mg/ml Bovine Serum Albumin, 0.02% Sodium Azide
Storage	Store at 4°C in dark for 6 months

Application Details

Suggested Dilution:

AF350 conjugated: most applications: 1: 50 - 1: 250
AF405 conjugated: most applications: 1: 50 - 1: 250
AF488 conjugated: most applications: 1: 50 - 1: 250
AF555 conjugated: most applications: 1: 50 - 1: 250
AF594 conjugated: most applications: 1: 50 - 1: 250
AF647 conjugated: most applications: 1: 50 - 1: 250
AF680 conjugated: most applications: 1: 50 - 1: 250
AF750 conjugated: most applications: 1: 50 - 1: 250

Biotin conjugated: working with enzyme-conjugated streptavidin, most applications: 1: 50 - 1: 1,000

Product Description

Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were purified by affinity-chromatography using epitope-specific peptide.

Background

Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP. Stimulates POU5F1-mediated transcriptional activation. Plays a general role in caspase independent cell death of tumor cells. The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production. The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival.

Note: This product is for in vitro research use only