PRKAR1A Conjugated Antibody

Catalog No: #C32091

 Package Size:
 #C32091-AF350 100ul
 #C32091-AF405 100ul
 #C32091-AF488 100ul

 #C32091-AF555 100ul
 #C32091-AF594 100ul
 #C32091-AF647 100ul

 #C32091-AF680 100ul
 #C32091-AF750 100ul
 #C32091-Biotin 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	PRKAR1A Conjugated Antibody
Host Species	Rabbit
Clonality	Polyclonal
Species Reactivity	Hu Ms Rt
Specificity	The antibody detects endogenous level of total PRKAR1A protein.
Immunogen Description	Recombinant protein of human PRKAR1A.
Conjugates	Biotin AF350 AF405 AF488 AF555 AF594 AF647 AF680 AF750
Other Names	PRKAR1A;CAR;CNC;CNC1;DKFZp779L0468
Accession No.	Swiss-Prot#:P10644NCBI Gene ID:5573
Uniprot	P10644
GenelD	5573;
Excitation Emission	AF350: 346nm/442nm
	AF405: 401nm/421nm
	AF488: 493nm/519nm
	AF555: 555nm/565nm
	AF594: 591nm/614nm
	AF647: 651nm/667nm
	AF680: 679nm/702nm
	AF750: 749nm/775nm
Calculated MW	43
Formulation	0.01M Sodium Phosphate, 0.25M NaCl, pH 7.6, 5mg/ml Bovine Serum Albumin, 0.02% Sodium Azide
Storage	Store at 4°C in dark for 6 months

Application Details

Suggested Dilution:

AF350 conjugated: most applications: 1: 50 - 1: 250
AF405 conjugated: most applications: 1: 50 - 1: 250
AF488 conjugated: most applications: 1: 50 - 1: 250
AF555 conjugated: most applications: 1: 50 - 1: 250
AF594 conjugated: most applications: 1: 50 - 1: 250
AF647 conjugated: most applications: 1: 50 - 1: 250
AF680 conjugated: most applications: 1: 50 - 1: 250
AF750 conjugated: most applications: 1: 50 - 1: 250
Biotin conjugated: working with enzyme-conjugated st

Antibodies were purified by affinity purification using immunogen.

Background

The second messenger cyclic AMP (cAMP) activates cAMP-dependent protein kinase (PKA or cAPK) in mammalian cells and controls many cellular mechanisms such as gene transcription, ion transport, and protein phosphorylation (1). Inactive PKA is a heterotetramer composed of a regulatory subunit (R) dimer and a catalytic subunit (C) dimer. In this inactive state, the pseudosubstrate sequences on the R subunits block the active sites on the C subunits. Three C subunit isoforms (C- α , C- β , and C- γ) and two families of regulatory subunits (RI and RII) with distinct cAMP binding properties have been identified. The two R families exist in two isoforms, α and β (RI- α , RI- β , RII- α , and RII- β). Upon binding of cAMP to the R subunits, the autoinhibitory contact is eased and active monomeric C subunits are released. PKA shares substrate specificity with Akt (PKB) and PKC, which are characterized by an arginine at position -3 relative to the phosphorylated serine or threonine residue (2). Substrates that present this consensus sequence and have been shown to be phosphorylated by PKA are Bad (Ser155), CREB (Ser133), and GSK-3 (GSK-3 α Ser21 and GSK-3 β Ser9) (3-5). In addition, combined knock-down of PKA C- α and - β blocks cAMP-mediated phosphorylation of Raf (Ser43 and Ser259) (6). Autophosphorylation by PDK-1 are two known mechanisms responsible for phosphorylation of the C subunit at Thr197 (7).

Note: This product is for in vitro research use only