G6PD Conjugated Antibody

Catalog No: #C32301

 Package Size:
 #C32301-AF350 100ul
 #C32301-AF405 100ul
 #C32301-AF488 100ul

 #C32301-AF555 100ul
 #C32301-AF594 100ul
 #C32301-AF647 100ul

 #C32301-AF680 100ul
 #C32301-AF750 100ul
 #C32301-Biotin 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	G6PD Conjugated Antibody
Host Species	Rabbit
Clonality	Polyclonal
Species Reactivity	Hu Ms Rt
Specificity	The antibody detects endogenous level of total G6PD protein.
Immunogen Description	Recombinant protein of human G6PD.
Conjugates	Biotin AF350 AF405 AF488 AF555 AF594 AF647 AF680 AF750
Other Names	G6PD;G6PD1
Accession No.	Swiss-Prot#:P11413NCBI Gene ID:2539
Uniprot	P11413
GenelD	2539;
Excitation Emission	AF350: 346nm/442nm
	AF405: 401nm/421nm
	AF488: 493nm/519nm
	AF555: 555nm/565nm
	AF594: 591nm/614nm
	AF647: 651nm/667nm
	AF680: 679nm/702nm
	AF750: 749nm/775nm
Calculated MW	59
Formulation	0.01M Sodium Phosphate, 0.25M NaCl, pH 7.6, 5mg/ml Bovine Serum Albumin, 0.02% Sodium Azide
Storage	Store at 4°C in dark for 6 months

Application Details

Suggested Dilution:

AF350 conjugated: most applications: 1: 50 - 1: 250		
AF405 conjugated: most applications: 1: 50 - 1: 250		
AF488 conjugated: most applications: 1: 50 - 1: 250		
AF555 conjugated: most applications: 1: 50 - 1: 250		
AF594 conjugated: most applications: 1: 50 - 1: 250		
AF647 conjugated: most applications: 1: 50 - 1: 250		
AF680 conjugated: most applications: 1: 50 - 1: 250		
AF750 conjugated: most applications: 1: 50 - 1: 250		
Biotin conjugated: working with enzyme-conjugated str		

Antibodies were purified by affinity purification using immunogen.

Background

Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first and rate-limiting step of the pentose phosphate pathway (1). The NADPH generated from this reaction is essential to protect cells from oxidative stress (1). Recent studies have shown that p53 interacts with G6PD and inhibits its activity, therefore suppressing glucose consumption through the pentose phosphate pathway (2). In cancer cells with p53 mutations, the increased glucose consumption is directed towards increased biosynthesis, which is critical for cancer cell proliferation (2).

Note: This product is for in vitro research use only