HIST4H4 Conjugated Antibody

Catalog No: #C38198

SAB Signalway Antibody

Package Size: #C38198-AF350 100ul #C38198-AF405 100ul #C38198-AF488 100ul

#C38198-AF555 100ul #C38198-AF594 100ul #C38198-AF647 100ul

#C38198-AF680 100ul #C38198-AF750 100ul #C38198-Biotin 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	HIST4H4 Conjugated Antibody
Host Species	Rabbit
Clonality	Polyclonal
Species Reactivity	Hu Ms Rt Other (Wide Rtange)
Specificity	The antibody detects endogenous level of total HIST4H4 antibody.
Immunogen Description	Recombinant protein of human HIST4H4.
Conjugates	Biotin AF350 AF405 AF488 AF555 AF594 AF647 AF680 AF750
Other Names	HIST4H4;H4/p;HIST1H4A;HIST1H4B;HIST1H4C;HIST1H4D;HIST1H4E;HIST1H4F;HIST1H4H;HIST1H4I;HIS
	T1H4J;HIST1H4K;HIST1H4L;HIST2H4A;HIST2H4B;MGC24116;Histone H4;
Accession No.	Swiss-Prot#:P62805NCBI Gene ID:121504
Uniprot	P62805
GeneID	121504;554313;8294;8359;8360;8361;8362;8363;8364;8365;8366;8367;8368;8370;
Excitation Emission	AF350: 346nm/442nm
	AF405: 401nm/421nm
	AF488: 493nm/519nm
	AF555: 555nm/565nm
	AF594: 591nm/614nm
	AF647: 651nm/667nm
	AF680: 679nm/702nm
	AF750: 749nm/775nm
Calculated MW	11
Formulation	0.01M Sodium Phosphate, 0.25M NaCl, pH 7.6, 5mg/ml Bovine Serum Albumin, 0.02% Sodium Azide
Storage	Store at 4°C in dark for 6 months

Application Details

Suggested Dilution:

AF350 conjugated: most applications: 1: 50 - 1: 250
AF405 conjugated: most applications: 1: 50 - 1: 250
AF488 conjugated: most applications: 1: 50 - 1: 250
AF555 conjugated: most applications: 1: 50 - 1: 250
AF594 conjugated: most applications: 1: 50 - 1: 250
AF647 conjugated: most applications: 1: 50 - 1: 250
AF680 conjugated: most applications: 1: 50 - 1: 250
AF750 conjugated: most applications: 1: 50 - 1: 250

Background

The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). Histone acetylation occurs mainly on the amino-terminal tail domains of histones H2A (Lys5), H2B (Lys5, 12, 15, and 20), H3 (Lys9, 14, 18, 23, 27, and 56), and H4 (Lys5, 8, 12, and 16) and is important for the regulation of histone deposition, transcriptional activation, DNA replication, recombination, and DNA repair (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the accessibility of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites for a protein module called the bromodomain, which binds to acetylated lysine residues (6). Many transcription and chromatin regulatory proteins contain bromodomains and may be recruited to gene promoters, in part, through binding of acetylated histone tails. Histone acetylation is mediated by histone acetyltransferases (HATs), such as CBP/p300, GCN5L2, PCAF, and Tip60, which are recruited to genes by DNA-bound protein factors to facilitate transcriptional activation (3). Deacetylation, which is mediated by histone deacetylases (HDAC and sirtuin proteins), reverses the effects of acetylation and generally facilitates transcriptional repression (7,8).

Histone H4 lysine 5 is acetylated by multiple HAT proteins. Acetylation by Esa1p in yeast, or Tip60 in mammalian cells, may contribute to both transcriptional activation and DNA repair, including non-homologous end joining and replication-coupled repair (9-12).

Note: This product is for in vitro research use only