ATP synthase subunit delta Polyclonal Conjugated Antibody

SAB Signalway Antibody

Catalog No: #C42141

Package Size: #C42141-AF350 100ul #C42141-AF405 100ul #C42141-AF488 100ul

#C42141-AF555 100ul #C42141-AF594 100ul #C42141-AF647 100ul

#C42141-AF680 100ul #C42141-AF750 100ul #C42141-Biotin 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	ATP synthase subunit delta Polyclonal Conjugated Antibody
Host Species	Rabbit
Clonality	Polyclonal
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of total ATP synthase subunit delta polyclonal antibody.
Immunogen Description	Recombinant human ATP synthase subunit delta, mitochondrial protein
Conjugates	Biotin AF350 AF405 AF488 AF555 AF594 AF647 AF680 AF750
Other Names	F-ATPase delta subunit,ATP5D
Accession No.	Swiss-Prot#:P25705
Uniprot	P25705
GeneID	498;
Excitation Emission	AF350: 346nm/442nm
	AF405: 401nm/421nm
	AF488: 493nm/519nm
	AF555: 555nm/565nm
	AF594: 591nm/614nm
	AF647: 651nm/667nm
	AF680: 679nm/702nm
	AF750: 749nm/775nm
Calculated MW	18.5
Formulation	0.01M Sodium Phosphate, 0.25M NaCl, pH 7.6, 5mg/ml Bovine Serum Albumin, 0.02% Sodium Azide
Storage	Store at 4°C in dark for 6 months

Application Details

Suggested Dilution:

AF350 conjugated: most applications: 1: 50 - 1: 250
AF405 conjugated: most applications: 1: 50 - 1: 250
AF488 conjugated: most applications: 1: 50 - 1: 250
AF555 conjugated: most applications: 1: 50 - 1: 250
AF594 conjugated: most applications: 1: 50 - 1: 250
AF647 conjugated: most applications: 1: 50 - 1: 250
AF680 conjugated: most applications: 1: 50 - 1: 250
AF750 conjugated: most applications: 1: 50 - 1: 250

Background

Mitochondrial membrane ATP synthase (F1F0 ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F1 - containing the extramembraneous catalytic core, and F0 - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F1 is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F1 domain and of the central stalk which is part of the complex rotary element. Rotation of the central stalk against the surrounding alpha3beta3 subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits.

Note: This product is for in vitro research use only