Recombinant Human Fibroblast Growth Factor- acidic (rHu aFGF)

SAB Signalway Antibody

Catalog No: #70401

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	Recombinant Human Fibroblast Growth Factor- acidic (rHu aFGF)
Brief Description	Recombinant Protein
Host Species	E.coli
Purification	> 95 % by SDS-PAGE and HPLC analyses.
Species Reactivity	Hu
Target Name	rHu aFGF
Other Names	FGF-1, ECGF, HBGF-1
Accession No.	accession:P05230 GeneID:2246
Uniprot	P05230
GeneID	2246;
Calculated MW	Approximately 16.0 kDa, a sing
SDS-PAGE MW	Sterile Filtered White lyophil
Target Sequence	MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD QHIQLQLSAE SVGEVYIKST ETGQYLAMDT
	DGLLYGSQTP NEECLFLERL EENHYNTYIS KKHAEKNWFV GLKKNGSCKR GPRTHYGQKA ILFLPLPVSS
	D
Formulation	Lyophilized from a 0.2 μm filtered concentrated solution in PBS, pH 7.4.
Storage	This lyophilized preparation is stable at 2-8 °C, but should be kept at -20 °C for long term storage, preferably
	desiccated. Upon reconstitution, the preparation is stable for up to one week at 2-8 °C. For maximal stability,
	apportion the reconstituted preparation into working aliquots and store at -20 °C to -70 °C. Avoid repeated
	freeze thaw cycles.

Background

Human aFGF, encoded by the FGF1 gene, is a member of the fibroblast growth factor (FGF) family. Fibroblast growth factor was found in pituitary extracts in 1973 and then tested in a bioassay that caused fibroblasts to proliferate. After further fractionating the extract using acidic and basic pH, two different forms have isolated that named "acidic fibroblast growth factor" (FGF-1) and "basic fibroblast growth factor" (FGF-2). Human aFGF shares 54 % amino acid sequence identity with bFGF. In mammalian FGF receptor family has 4 members, FGFR1, FGFR2, FGFR3, and FGFR4, and 1, 2, 3 have 2 sub-types $o\Omega\frac{1}{2}o$

References

- 1. Dionne CA, Crumley G, Bellot F, et al. 1990. EMBO J. 9:2685-92.
- 2. Jaye M, Howk R, Burgess W, et al. 1986. Science. 233:541-5.
- 3. Armelin HA. 1973. Proc Natl Acad Sci U S A. 70:2702-6.
- 4. Gospodarowicz D. 1974. Nature. 249:123-7.
- 5. Zhang X, Ibrahimi OA, Olsen SK, et al. 2006. J Biol Chem. 281:15694-700.
- 6. Ornitz DM, Xu J, Colvin JS, et al. 1996. J Biol Chem. 271:15292-7.

- 7. Eswarakumar VP, Lax I, Schlessinger J. 2005. Cytokine Growth Factor Rev. 16:139-49.
- 8. Landriscina M, Bagala C, Mandinova A, et al. 2001. J Biol Chem. 276:25549-57.
- 9. Fernandez IS, Cuevas P, Angulo J, et al. 2010. J Biol Chem. 285:11714-29.

Note: This product is for in vitro research use only