AGXT Antibody

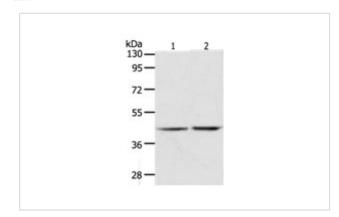
Catalog No: #31276

SAB Signalway Antibody

Package Size: #31276-1 50ul #31276-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description


Product Name	AGXT Antibody
Host Species	Rabbit
Clonality	Polyclonal
Applications	ELISA WB
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of total AGXT protein.
Immunogen Type	Peptide
Immunogen Description	Synthetic peptide corresponding to a region derived from 280-294 amino acids of human alanine-glyoxylate
	aminotransferase
Target Name	AGXT
Other Names	Alanine-glyoxylate aminotransferase, AGT; PH1; SPT; AGT1; SPAT; TLH6; AGXT1
Formulation	Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol.
Storage	Store at -20°C/1 year

Application Details

Predicted MW: 43kd ELISA: 1:1000-1:2000

Western blotting: 1:200-1:1000

Images

Gel: 10%SDS-PAGE Lane1: Hela cell lysate

Lane2: Human fetal liver tissue lysate

Lysates: 40 ug per lane Primary antibody: 1/400 dilution

Secondary antibody: Goat anti Rabbit IgG - H&L (HRP) at

1/10000 dilution

Exposure time: 2 minutes

Background

SerineB'B pyruvate aminotransferase is an enzyme that in humans is encoded by the AGXT gene. This gene is expressed only in the liver and the encoded protein is localized mostly in the peroxisomes, where it is involved in glyoxylate detoxification. Mutations in this gene, some of which alter subcellular targetting, have been associated with type I primary hyperoxaluria. Defects in AGXT are the cause of hyperoxaluria primary type 1 (HP1), also known as primary hyperoxaluria type I (PH1) and oxalosis I. HP1 is a rare autosomal recessive inborn error of glyoxylate metabolism

characterized by increased excretion of oxalate and glycolate, and the progressive accumulation of insoluble calcium oxalate in the kidney and urinal tract.						
Note: This product is for in vitro research use only						