SirT1 (Phospho-Ser47) Antibody

Catalog No: #11926

Package Size: #11926-1 50ul #11926-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description	
Product Name	SirT1 (Phospho-Ser47) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of SirT1 only when phosphorylated at serine 47.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of serine 47(E-R-S(p)-P-G) derived from Human SirT1.
Target Name	SirT1
Modification	Phospho
Other Names	hSIR2; hSIRT1; NAD-dependent deacetylase sirtuin 1; SIR1; SIR2L1
Accession No.	Swiss-Prot#: Q96EB6; NCBI Gene#: 23411; NCBI Protein#: NP_001135970.1
Uniprot	Q96EB6
GenelD	23411;
SDS-PAGE MW	110kd
Concentration	1.0mg/ml
Formulation	Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide
	and 50% glycerol.
Storage	Store at -20°C/1 year

Application Details

Images

Western blotting: 1:500~1:1000

Western blot analysis of extracts from JK tissue using SirT1 (Phospho-Ser47) antibody #11926.The lane on the right is treated with the antigen-specific peptide.

Background

NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Gao Z, et al. (2011) J Biol Chem 286, 22227-34. Zschoernig B, Mahlknecht U (2009)Biochem Biophys Res Commun 381, 372-7. Nasrin N, et al. (2009)PLoS One 4, e8414.

Note: This product is for in vitro research use only