FAK(Phospho-Tyr397) Antibody

Catalog No: #11215

Package Size: #11215-1 50ul #11215-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description	
Product Name	FAK(Phospho-Tyr397) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB IHC
Species Reactivity	Hu Ms Rt
Specificity	The antibody detects endogenous level of FAK only when phosphorylated at Tyrosine 397.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of tyrosine 397(D-D-Y(p)-A-E)derived from Human FAK.
Target Name	FAK
Modification	Phospho
Other Names	FAK; FAK1; PTK2
Accession No.	Swiss-Prot: Q05397NCBI Protein: NP_001186578.1
Uniprot	Q05397
GeneID	5747;
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Application Details

Predicted MW: 125kd

Western blotting: 1:500~1:1000

Immunohistochemistry: 1:50 - 1:100

Images

Western blot analysis of extract from 293 cells untreated or treated with EGF using FAK(Phospho-Tyr397) Antibody using #11215

Immunohistochemical analysis of paraffin-embedded Mouse-brain tissue.

Background

Non-receptor protein-tyrosine kinase implicated in signaling pathways involved in cell motility, proliferation and apoptosis. Activated by tyrosine-phosphorylation in response to either integrin clustering induced by cell adhesion or antibody cross-linking, or via G-protein coupled receptor (GPCR) occupancy by ligands such as bombesin or lysophosphatidic acid, or via LDL receptor occupancy. Microtubule-induced dephosphorylation at Tyr-397 is crucial for the induction of focal adhesion disassembly. Plays a potential role in oncogenic transformations resulting in increased kinase activity.

Matsuya M.et.al. (1998)J. Biol. Chem. 273:1003-1014 Fujita H.et.al. (1998)J. Biol. Chem. 273:26516-26521 Le Romancer M.et.al. (2008)Mol. Cell 31:212-221

Note: This product is for in vitro research use only