Product Datasheet

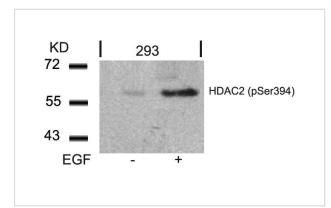
HDAC2(Phospho-Ser394) Antibody

Catalog No: #11191

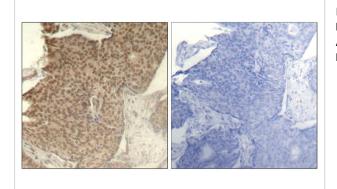
Package Size: #11191-1 50ul #11191-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

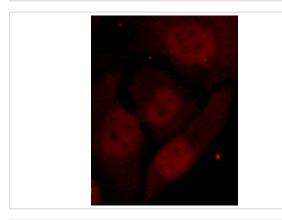
Description

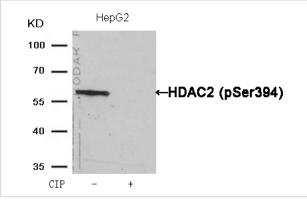

Product Name	HDAC2(Phospho-Ser394) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB IHC IF
Species Reactivity	Hu Ms Rt
Specificity	The antibody detects endogenous level of HDAC2 only when phosphorylated at serine 394.
mmunogen Type	Peptide-KLH
mmunogen Description	Peptide sequence around phosphorylation site of serine 394 (E-D-S(p)-G-D) derived from Human HDAC2.
Conjugates	Unconjugated
Farget Name	HDAC2
Modification	Phospho
Other Names	HD2
Accession No.	Swiss-Prot: Q92769NCBI Protein: NP_001518.2
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Application Details


Predicted MW: 60kd
Western blotting: 1:500~1:1000
Immunohistochemistry: 1:50~1:100

Immunofluorescence: 1:100~1:200


Images


Western blot analysis of extracts from 293 cells untreated or treated with EGF using HDAC2(Phospho-Ser394) Antibody #11191.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using HDAC2(Phospho-Ser394) Antibody #11191(left) or the same antibody preincubated with blocking peptide(right).

Immunofluorescence staining of methanol-fixed Hela cells showing nuclear staining using HDAC2(Phospho-Ser394) Antibody #11191.

Western blot analysis of extracts from HepG2 cells, treated with calf intestinal phosphatase (CIP), using HDAC2 (Phospho-Ser394) Antibody #11191.

Background

Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes

Tsai SC, et al.(2002)J Biol Chem; 277(35): 31826-33

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.