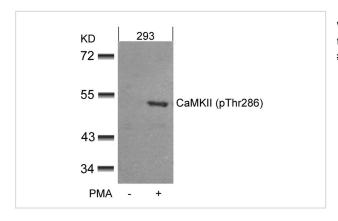
CaMKII(Phospho-Thr286) Antibody

Catalog No: #11287

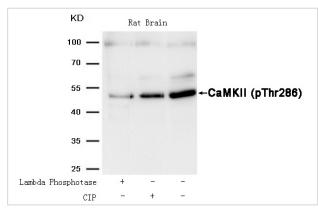
Package Size: #11287-1 50ul #11287-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

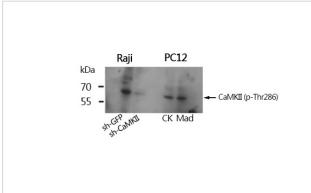
	4.5
Descri	ntion
DUSUIT	Puon


Product Name	CaMKII(Phospho-Thr286) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB
Species Reactivity	Hu Ms Rt
Specificity	The antibody detects endogenous level of CaMKII only when phosphorylated at threonine 286.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of threonine 286 (Q-E-T(p)-V-D) derived from Human CaMKII.
Conjugates	Unconjugated
Target Name	CaMKII
Modification	Phospho
Other Names	CAMKA
Accession No.	Swiss-Prot: Q9UQM7NCBI Protein: NP_057065.2
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Application Details


Predicted MW: 50kd

Western blotting: 1:500~1:1000


Images

Western blot analysis of extracts from 293 cells untreated or treated with PMA using CaMKII(Phospho-Thr286) Antibody #11287.

Western blot analysis of extracts from Rat brain tissue treated with Lambda Phosphotase or calf intestinal phosphatase (CIP),using CaMKII (Phospho-Thr286) Antibody#11287.

Western blotting analysis using CaMKII(Phospho-Thr286) Antibody #11287.

Background

CaM-kinase II (CAMK2) is a prominent kinase in the central nervous system that may function in long-term potentiation and neurotransmitter release.

Member of the NMDAR signaling complex in excitatory synapses it may regulate NMDAR-dependent potentiation of the AMPAR and synaptic plasticity.

Pak JH, et al. Proc Natl Acad Sci U S A. 2000 Oct 10; 97(21): 11232-11237

Hudmon A, et al. J Cell Biol. Author manuscript; available in PMC 2006 May 7

Miller P, et al. PLoS Biol. 2005 Apr; 3(4): e107

Runyan JD, et al. Learn Mem. 2005 Mar; 12(2): 103-110.

Published Papers

el at., Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis.In Basic Clin Pharmacol Toxicol on 2020 Feb; by Ma W, Liu M, et al..PMID:31483925, , (2020)

PMID:31483925

el at., Mechanisms underlying a decrease in KCl-induced contraction after long-term serum-free organ culture of rat isolated mesenteric artery. In J Vet Med Sci on 2014 Jul by Tomoka Morita, Muneyoshi Okada et al.. PMID: 24694942, , (2014)

PMID:24694942

el at., Activation of M3 cholinoceptors attenuates vascular injury after ischaemia/reperfusion by inhibiting the Ca2+/calmodulinι ζ• ependent protein kinase II pathway.In Br J Pharmacol on 2015 Dec by Xing-Zhu Lu, Xue-Yuan Bi et al..PMID: 25953628, , (2015)

PMID:25953628

el at., HIV subtypes B and C gp120 and methamphetamine interaction: dopaminergic system implicates differential neuronal toxicity.In Sci Rep on 2015 Jun 9 by Thangavel Samikkannu, Kurapati V K Rao et al..PMID: 26057350, , (2014)

PMID:26057350

el at., Roles of transient receptor potential channel 6 in glucose-induced cardiomyocyte injury. In World J Diabetes on 2022 Apr 15 by Shi-Jun Jiang,et al..PMID:35582666, , (2022)

PMID:35582666

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			
The product of the first the recourse and only and to not interface for account furnished animals.			