Product Datasheet

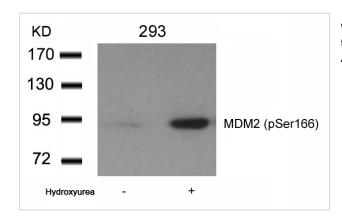
MDM2(phospho-Ser166) Antibody

Catalog No: #11550

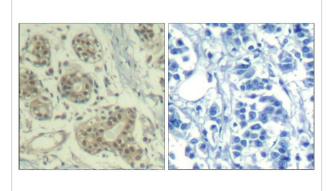
Package Size: #11550-1 50ul #11550-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

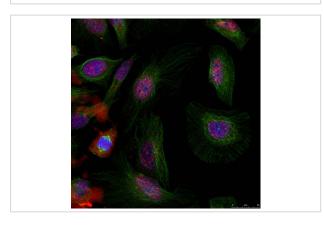
Description


Product Name	MDM2(phospho-Ser166) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB IHC IF
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of MDM2 only when phosphorylated at serine 166.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of Serine 166 (A-I-S(p)-E-T) derived from Human MDM2.
Conjugates	Unconjugated
Target Name	MDM2
Modification	Phospho
Other Names	HDMX, hdm2
Accession No.	Swiss-Prot: Q00987NCBI Protein: NP_002383.2
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Application Details


Predicted MW: 90kd
Western blotting: 1:500~1:1000
Immunohistochemistry: 1:50~1:100

Immunofluorescence: 1:100~1:200


Images

Western blot analysis of extracts from 293 cells untreated or treated with Hydroxyurea using MDM2(phospho-Ser166) Antibody #11550.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using MDM2(Phospho-Ser166) Antibody #11550(left) or the same antibody preincubated with blocking peptide(right).

Immunofluorescence staining of methanol-fixed Hela cells using MDM2(phospho-Ser166) Antibody #11550.

Background

This gene is a target gene of the transcription factor tumor protein p53. The encoded protein is a nuclear phosphoprotein that binds and inhibits transactivation by tumor protein p53, as part of an autoregulatory negative feedback loop. Overexpression of this gene can result in excessive inactivation of tumor protein p53, diminishing its tumor suppressor function. This protein has E3 ubiquitin ligase activity, which targets tumor protein p53 for proteasomal degradation. This protein also affects the cell cycle, apoptosis, and tumorigenesis through interactions with other proteins, including retinoblastoma 1 and ribosomal protein L5. More than 40 different alternatively spliced transcript variants have been isolated from both tumor and normal tissues

Haupt, Y. et al. (1997) Nature 387, 296-299.

Zhou, B. P. et al. (2001) Nat. Cell Biol. 3, 973-981.

Grossman, S. R. et al. (1998) Mol. Cell 2, 405-415.

Mayo, L.D. and Donner, D.B. (2001) Proc. Natl. Acad. Sci. USA 98, 11598-11603.

Published Papers

Hetian Lei, Gisela Velez, Andrius Kazlauskas el at., Pathological Signaling via Platelet-Derived Growth Factor Receptor Involves Chronic Activation of Akt and Suppression of p53, MOLECULAR AND CELLULAR BIOLOGY, 31(9):1788-1799(2011)

PMID:21357737

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.