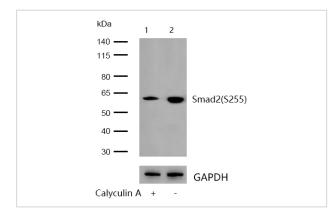
Product Datasheet

Smad2(Phospho-S255) Rabbit mAb

Catalog No: #13429

Package Size: #13429-1 50ul #13429-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	Smad2(Phospho-S255) Rabbit mAb
Host Species	Rabbit
Clonality	Monoclonal
Clone No.	JF0882
Purification	ProA affinity purified
Applications	WB,IHC
Species Reactivity	Hu, Ms, Rt
Immunogen Description	Synthetic phospho-peptide corresponding to residues surrounding Ser255 of human Smad2.
Conjugates	Unconjugated
Other Names	Drosophila, homolog of, MADR2 antibody hMAD-2 antibody HsMAD2 antibody JV18 antibody JV18-1
	antibody JV181 antibody MAD antibody MAD homolog 2 antibody MAD Related Protein 2 antibody
	Mad-related protein 2 antibody MADH2 antibody MADR2 antibody MGC22139 antibody MGC34440
	antibody Mother against DPP homolog 2 antibody Mothers against decapentaplegic homolog 2 antibody
	Mothers against decapentaplegic, Drosophila, homolog of, 2 antibody Mothers against DPP homolog 2
	antibody OTTHUMP00000163489 antibody Sma and Mad related protein 2 antibody Sma- and Mad-related
	protein 2 MAD antibody SMAD 2 antibody SMAD family member 2 antibody SMAD, mothers against DPP
	homolog 2 antibody SMAD2 antibody SMAD2_HUMAN antibody
Accession No.	Swiss-Prot#:Q15796
Calculated MW	Predicted band size: 52 kDa
SDS-PAGE MW	Observed band size: 60 kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C

Application Details

WB: 1:500-1:2000 IHC: 1:50-1:200

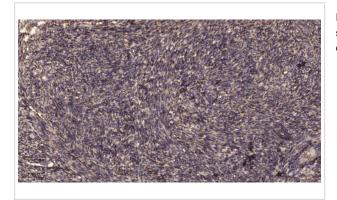
Images

All lanes: Smad2(Phospho-S255) Rabbit mAb at 1/1k dilution

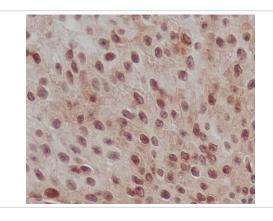
Lane 1: Hela whole cell lysates

Lane 2: Hela treated with 200nM Calyculin A for 1 hours

whole cell lysates


Lysates/proteins at 20 µg per lane.

Secondary


All lanes: Goat Anti-Rabbit IgG H&L (HRP) at 1/20000 dilution

Predicted band size: 52 kDa Observed band size: 60 kDa

Exposure time: 15 seconds

Formalin-fixed, paraffin-embedded human uterus tissue stained for Smad2 (Phospho-S255) using 13429 at 1/100 dilution in immunohistochemical analysis.

Formalin-fixed, paraffin-embedded human bladder tissue stained for Smad2 (Phospho-S255) using 13429 at 1/100 dilution in immunohistochemical analysis.

Background

Smad proteins, the mammalian homologs of the Drosophila mothers against decapentaplegic (Mad), have been implicated as downstream effectors of TGF β /BMP signaling. Smad1 (also designated Madr1 or JV4-1) and Smad5 are effectors of BMP-2 and BMP-4 function, while Smad2 (also designated Madr2 or JV18-1) and Smad3 are involved in TGF β and Activin-mediated growth modulation. Smad4 (also designated DPC4) has been shown to mediate all of the above activities through interaction with various Smad family members. Smad6 and Smad7 regulate the response to Activin/TGF β signaling by interfering with TGF β -mediated phosphorylation of other Smad proteins.

References

Published Papers

el at., Gastrodin attenuates renal injury and collagen deposition via suppression of the TGF-β1/Smad2/3 signaling pathway based on network pharmacology analysis InFront PharmacolOn2023 Jan 17byYing Wen , Xiuli Zhang et al..PMID:36733505, , (2023)

PMID:36733505

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.