Product Datasheet

Caspase-1 (phospho Ser376) Polyclonal Antibody

Catalog No: #14017

Package Size: #14017-1 50ul #14017-2 100ul

Support: tech@signalwayantibody.com

Description Caspase-1 (phospho Ser376) Polyclonal Antibody **Product Name Host Species** Rabbit Clonality Polyclonal Purification The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen. WB;IHC;IF;ELISA Applications Species Reactivity Human, Mouse, Rat Specificity Phospho-Caspase-1 (S376) Polyclonal Antibody detects endogenous levels of Caspase-1 protein only when phosphorylated at S376. The antiserum was produced against synthesized peptide derived from human Caspase 1 around the Immunogen Description phosphorylation site of Ser376. AA range:342-391 Conjugates Unconjugated Other Names CASP1; IL1BC; IL1BCE; Caspase-1; CASP-1; Interleukin-1 beta convertase; IL-1BC; Interleukin-1 beta-converting enzyme; ICE; IL-1 beta-converting enzyme; p45 Accession No. Swiss Prot:P29466GeneID:834 SDS-PAGE MW 29 Concentration 1 mg/ml Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Formulation Storage -20°C/1

Application Details

WB 1:500-1:2000; IHC 1:100-1:300; ELISA 1:20000; IF 1:50-200

Background

caspase 1(CASP1) Homo sapiens This gene encodes a protein which is a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes which undergo proteolytic processing at conserved aspartic residues to produce 2 subunits, large and small, that dimerize to form the active enzyme. This gene was identified by its ability to proteolytically cleave and activate the inactive precursor of interleukin-1, a cytokine involved in the processes such as inflammation, septic shock, and wound healing. This gene has been shown to induce cell apoptosis and may function in various developmental stages. Studies of a similar gene in mouse suggest a role in the pathogenesis of Huntington disease. Alternative splicing results in transcript variants encoding distinct isoforms. [provided by RefSeq, Mar 2012],

Note: This product is for in vitro research use only and is not intended for use in humans or animals.