IGF-1R(Ab-1161) Antibody

Catalog No: #21080

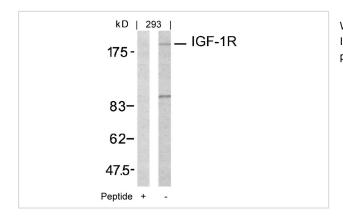
Package Size: #21080-1 50ul #21080-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

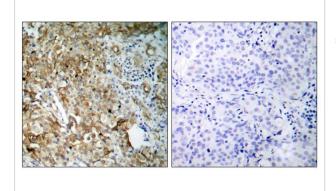
Description

Product Name	IGF-1R(Ab-1161) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were
	purified by affinity-chromatography using epitope-specific peptide.
Applications	WB IHC IF
Species Reactivity	Hu Ms Rt
Specificity	The antibody detects endogenous level of total IGF-1R protein.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around aa.1159~1163 (D-I-Y-E-T) derived from Human IGF-1R .
Conjugates	Unconjugated
Target Name	IGF-1R
Other Names	Insulin-like growth factor I receptor; CD221; IGF1R; kinase IGF1R;
Accession No.	Swiss-Prot: P08069NCBI Protein: NP_000866.1
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

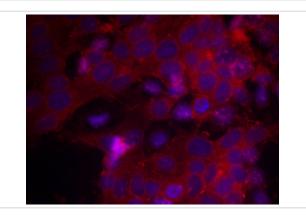
Application Details


Predicted MW: 200 95 kd

Western blotting: 1:500~1:1000


Immunohistochemistry: 1:50~1:100

Immunofluorescence: 1:100~1:200


Images

Western blot analysis of extracts from 293 cells using IGF-1R(Ab-1161) Antibody #21080 and the same antibody preincubated with blocking peptide.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using IGF-1R(Ab-1161) Antibody #21080(left) or the same antibody preincubated with blocking peptide(right).

Immunofluorescence staining of methanol-fixed MCF cells using IGF-1R(Ab-1161) Antibody #21080.

Background

This receptor binds insulin-like growth factor 1 (IGF1) with a high affinity and IGF2 with a lower affinity. It has a tyrosine-protein kinase activity, which is necessary for the activation of the IGF1-stimulated downstream signaling cascade. When present in a hybrid receptor with INSR, binds IGF1. Li S, et al. (1994) J Biol Chem; 269(51).

Hernandez-Sanchez C, et al. (1995) J Biol Chem.

Published Papers

Hossein Haghir, Abd-Al-Rahim Rezaee, Hossein Nomani el at., Sexual Dimorphism in Expression of Insulin and Insulin-Like Growth Factor-I Receptors in Developing Rat Cerebellum., Cell Mol Neurobiol, 33:369n— C377(2013)

PMID:23322319

TAKETSUGU YAMAMOTO, TAKASHI OSHIMA, KAZUE YOSHIHARA el at., Clinical significance of immunohistochemical expression of insulin-like growth factor-1 receptor and matrix metalloproteinase-7 in resected non-small cell lung cancer, EXPERIMENTAL AND THERAPEUTIC MEDICINE, 3(5):797-802.(2012)

PMID:22969971

el at., The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus.In Brain Struct Funct on 2013 Jan by Hami J, Sadr-Nabavi A,et al..PMID:22241286, , (2013)

PMID:22241286

el at., Sexual dimorphism in expression of insulin and insulin-like growth factor-I receptors in developing rat cerebellum.In Cell Mol Neurobiol on 2013 Apr by Haghir H, Rezaee AA,et al..PMID:23322319, , (2013)

PMID:23322319

el at., Circular RNA_PDHX Promotes the Proliferation and Invasion of Prostate Cancer by Sponging MiR-378a-3p. In Front Cell Dev Biol on 2021 Jan 28 by Yuanshen Mao, Wenfeng Li,et al..PMID:33634097, , (2021)

PMID:33634097

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.