p70 S6 Kinase(Ab-424) Antibody

Catalog No: #21276

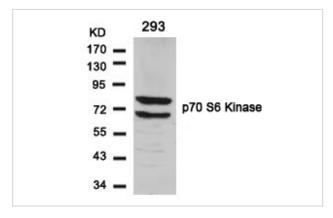
Package Size: #21276-1 50ul #21276-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

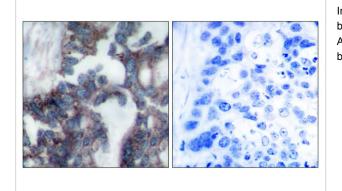
Description

Product Name	p70 S6 Kinase(Ab-424) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were
	purified by affinity-chromatography using epitope-specific peptide.
Applications	WB IHC IF
Species Reactivity	Hu Ms Rt
Specificity	The antibody detects endogenous level of total p70 S6 Kinase protein.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around aa.422~426 (P-V-S-P-V) derived from Human p70S6k.
Conjugates	Unconjugated
Target Name	p70 S6 Kinase
Other Names	KS6B1; P70-S6K; RPS6KB1; S6K;
Accession No.	Swiss-Prot: P23443NCBI Protein: NP_003152.1
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

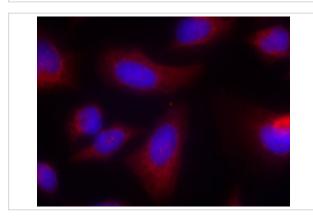
Application Details


Predicted MW: 70 85 kd

Western blotting: 1:500~1:1000


Immunohistochemistry: 1:50~1:100

Immunofluorescence: 1:100~1:200


Images

Western blot analysis of extracts from 293 cells using p70 S6 Kinase(Ab-424) Antibody #21276.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using p70 S6 Kinase(Ab-424) Antibody #21276(left) or the same antibody preincubated with blocking peptide(right).

Immunofluorescence staining of methanol-fixed Hela cells using p70 S6 Kinase(Ab-424) Antibody #21276.

Background

RPS6KB1 phosphorylates the Ribosomal Protein-S6. Activation of RPS6KB1 requires a complex, ordered series of conformational changes and phosphorylation reactions. While the role of sequential, multi-site phosphorylation has been extensively detailed, characterization of the priming step required to initiate this cascade has remained elusive. Probably this priming process is dependent on calcium. Calcium-dependent regulation of RPS6KB1 does not specifically target Thr-229 and Thr-389, the key regulatory phosphorylation sites; rather, calcium chelation results in a global inhibition of RPS6KB1 phosphorylation. The initial calcium-dependent process is required to release an inhibitory interaction between the C- and N-termini of RPS6KB1, thus allowing phosphorylation of key domains. The priming event involves formation of a calcium-dependent protein complex that releases the interaction between the N- and C-termini. RPS6KB1 is then accessible for activation by the kinases that target the known regulatory phosphorylation sites.

Satoru Eguchi et al. (1999) J Biol Chem, Vol. 274: 36843-36851 Papst PJ, et al. (1998) J Biol Chem. 273(24):15077-84. Ulrike Krause et al. (2002) Eur. J. Biochem. 269: 3751-3759 c Le, X.F, et al. (2003) Oncogene 22: 484

Published Papers

el at., 5-HT 2 receptor mediates high-fat diet-induced hepatic steatosis and very low density lipoprotein overproduction in rats. In Obes Res Clin Pract.

On 2018 Jan - Feb by Li X, Guo K et al.. PMID: 27133527, , (2018)

PMID:27133527

el at., Effect of electrical stimulation comblned with diet therapy on InsulIn resistance via mTOR signalIng. In Mol Med Rep on 2019 Dec by Huang S, Tang N, et al..PMID:31702811, , (2019)

PMID:31702811

el at., EBV-LMP1 Regulating AKT/mTOR Signaling Pathway and WWOX in Nasopharyngeal Carcinoma.In Int J Clin Exp Pathol on 2017 Aug 1 by Lingyan Qin, Xiaohong Li,et al..PMID: 31966718, , (2017)

PMID:31966718

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.