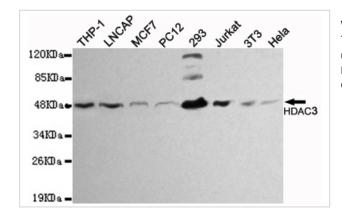
HDAC3 Monoclonal Antibody

Catalog No: #27125

Package Size: #27125-1 50ul #27125-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description


Product Name	HDAC3 Monoclonal Antibody
Host Species	Mouse
Clonality	Monoclonal
Clone No.	3G3-H6-H10
Isotype	lgG1
Applications	ELISA WB
Species Reactivity	Hu D Rt Rb Ms P
Immunogen Type	Recombinant protein
Immunogen Description	Purified recombinant human HDAC3 protein fragments expressed in E.coli.
Conjugates	Unconjugated
Target Name	HDAC3
Other Names	HD3, RPD3, RPD3-2
Accession No.	Swiss-Prot:P09936Gene ID:7345
Formulation	ascites

Application Details

Predicted MW: 49kd

Western blotting: 1:1000

Images

Western blot detection of HDAC3 in THP-1,LNCAP,MCF7,PC12,293,Jurkat,3T3&Hela cell lysates using HDAC3 antibody (1:1000 diluted). Predicted band size:49KDa.

Observed band size:49KDa

Background

Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), and some other non-histone substrates. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression, and developmental events.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		