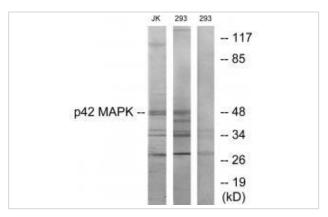
p42 MAPK Antibody

Catalog No: #33736

Package Size: #33736-1 50ul #33736-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


$\overline{}$		4.5	
	escri	ntion	
$\boldsymbol{-}$	COUL	Puon	

Product Name	p42 MAPK Antibody	
Host Species	Rabbit	
Clonality	Polyclonal	
Purification	The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific	
	immunogen.	
Applications	WB	
Species Reactivity	Hu Ms Rt	
Specificity	The antibody detects endogenous levels of total p42 MAPK protein.	
Immunogen Type	Peptide	
Immunogen Description	Synthesized peptide derived from internal of human p42 MAPK.	
Conjugates	Unconjugated	
Target Name	p42 MAPK	
Other Names	EC 2.7.11.24; ERK-2; ERK2; ERT1; Extracellular signal- regulated kinase 2	
Accession No.	Swiss-Prot: P28482NCBI Gene ID: 5594	
SDS-PAGE MW	48kd	
Concentration	1.0mg/ml	
Formulation	Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide	
	and 50% glycerol.	
Storage	Store at -20°C	

Application Details

Western blotting: 1:500~1:3000

Images

Western blot analysis of extracts from Jurkat cells and 293 cells, using p42 MAPK antibody #33736.

Background

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in respons to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity. Owaki H., Biochem. Biophys. Res. Commun. 182:1416-1422(1992).

Gevaert K., Nat. Biotechnol. 21:566-569(2003).

Greenway A.L., J. Virol. 70:6701-6708(1996).

Published Papers

el at., Adipocytes affect castration-resistant prostate cancer cells to develop the resistance to cytotoxic action of NK cells with alterations of PD-L1/NKG2D ligand levels in tumor cells.In Prostate.On 2018 Apr by Xu L, Shen M et al..PMID: 29330929, , (2018)

PMID:29330929

Note: This product is for in vitro research use only and is not intended for use in humans or animals.