## β I tubulin Mouse Monoclonal Antibody

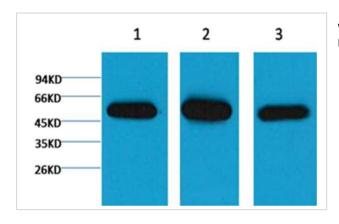
Catalog No: #37983

Package Size: #37983 100ul

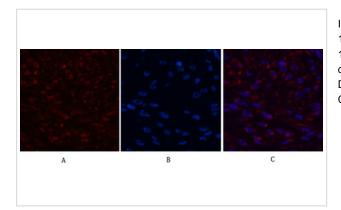


Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

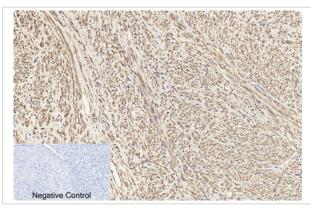
| _   |      |      |      |
|-----|------|------|------|
| 1)6 | esci | rınt | เดท  |
| -   |      | ıρι  | 1011 |


| Product Name       | β I tubulin Mouse Monoclonal Antibody                                                             |  |
|--------------------|---------------------------------------------------------------------------------------------------|--|
| Host Species       | Mouse                                                                                             |  |
| Clonality          | Monoclonal                                                                                        |  |
| Purification       | Affinity purification using immunogen.                                                            |  |
| Applications       | WB,IHC,IF                                                                                         |  |
| Species Reactivity | Hu Rt Ms                                                                                          |  |
| Specificity        | The $\beta$ I tubulin antibody can recognize endgenous $\beta$ I tubulin proteins.                |  |
| Conjugates         | Unconjugated                                                                                      |  |
| Target Name        | β I tubulin                                                                                       |  |
| Accession No.      | Swiss-Prot:Q9H4B7Gene ID:81027                                                                    |  |
| SDS-PAGE MW        | 55kd                                                                                              |  |
| Concentration      | 1.0mg/ml                                                                                          |  |
| Formulation        | Mouse IgG1 in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium |  |
|                    | azide and 50% glycerol.                                                                           |  |
| Storage            | Store at -20°C                                                                                    |  |

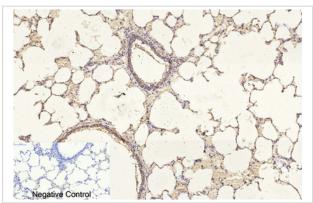
## **Application Details**


WB dilution: 1:5000~1:10000

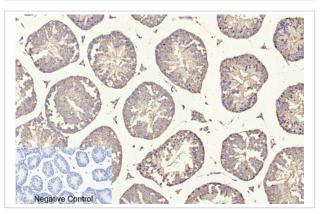
IHC dilution:1:50-300IF dilution:1:200


## **Images**




Western blot analysis of 1) Hela, 2) Mouse Brain Tissue, 3) Rat Brain Tissue, using #37983 diluted at 1:5,000.




Immunofluorescence analysis of Human-breast-cancer tissue. 1, I tubulin Monoclonal Antibody(3F7)(red) was diluted at 1:200(4C,overnight). 2, Cy3 labled Secondary antibody was diluted at 1:300(room temperature, 50min).3, Picture B: DAPI(blue) 10min. Picture A:Target. Picture B: DAPI. Picture C: merge of A+B



Immunohistochemical analysis of paraffin-embedded Human-uterus-cancer tissue. 1, I tubulin Monoclonal Antibody(3F7) was diluted at 1:200(4C,overnight). 2, Sodium citrate pH 6.0 was used for antibody retrieval(>98C,20min). 3,Secondary antibody was diluted at 1:200(room tempeRature, 30min). Negative control was used by secondary antibody only.



Immunohistochemical analysis of paraffin-embedded Rat-lung tissue. 1, I tubulin Monoclonal Antibody(3F7) was diluted at 1:200(4C,overnight). 2, Sodium citrate pH 6.0 was used for antibody retrieval(>98C,20min). 3,Secondary antibody was diluted at 1:200(room tempeRature, 30min). Negative control was used by secondary antibody only.



Immunohistochemical analysis of paraffin-embedded Mouse-testis tissue. 1, I tubulin Monoclonal Antibody(3F7) was diluted at 1:200(4C,overnight). 2, Sodium citrate pH 6.0 was used for antibody retrieval(>98C,20min). 3,Secondary antibody was diluted at 1:200(room tempeRature, 30min). Negative control was used by secondary antibody only.

## Background

Tubulin is one of several members of a small family of globular proteins. The tubulin superfamily includes five distinct families, the alpha-, beta-, gamma-, delta-, and epsilon-tubulins. The most common members of the tubulin family are  $\alpha$ -tubulin and  $\beta$ -tubulin, the proteins that make up microtubules. Each has a molecular weight of approximately 55 KD. Microtubules are assembled from dimers of  $\alpha$ - and  $\beta$ -tubulin.

| Note: This product is for in vitro research use only and is not intended for use in humans or animals. |
|--------------------------------------------------------------------------------------------------------|
| The product is for in vitro recognish as only and is not interface for account name of animals.        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |