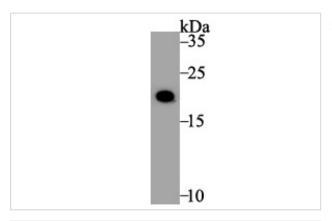
Histone H3.1 Antibody

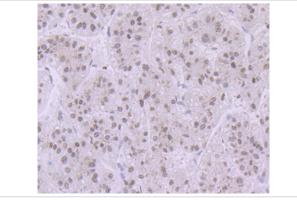
Catalog No: #48540

Package Size: #48540-1 50ul #48540-2 100ul

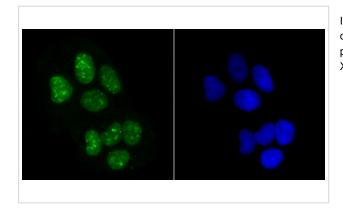
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

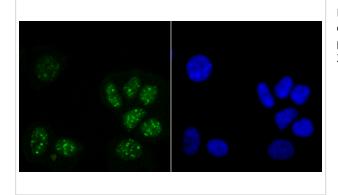

	4.6
Descri	ntion
DCGGII	puon

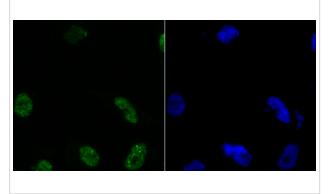
Product Name	Histone H3.1 Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Peptide affinity purified.
Applications	WB,ICC,IHC
Species Reactivity	Hu, Ms
Immunogen Description	Synthetic peptide of N-terminal human Histone H3.1.
Conjugates	Unconjugated
Accession No.	Swiss-Prot#:P68431
Calculated MW	15.4 kDa
Formulation	1*TBS (pH7.4), 0.5%BSA, 50%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C


Application Details

WB: 1:500-1:1,000 IHC: 1:50-1:200 ICC: 1:50-1:200


Images


Western blot analysis of Histone H3.1 on F9 cell lysate using anti-Histone H3.1 antibody at 1/1,000 dilution.


Immunohistochemical analysis of paraffin-embedded human liver tissue using anti-Histone H3.1 antibody. Counter stained with hematoxylin.

ICC staining Histone H3.1 in Hela cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining Histone H3.1 in MCF-7 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining Histone H3.1 in PC-3M cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Background

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

References

Published Papers

Florian Forster; Wolfgang Paster; Verena Supper; Philipp Schatzlmaier; Stefan Sunzenauer; Nicole Ostler; Anna Saliba; Paul Eckerstorfer; Nathalie Britzen-Laurent; Gerhard Schuetz; Johannes A. Schmid; Gerhard J. Zlabinger; Elisabeth Naschberger; Michael Stuerzl; Hannes Stockinger el at., Guanylate Binding Protein 1-Mediated Interaction of T Cell Antigen Receptor Signaling with the Cytoskeleton, (2014)

PMID:24337748

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			
The product of the first the recourse and only and to not interface for account furnished animals.			