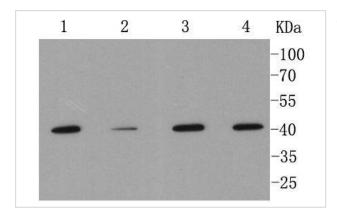
MMP12 Rabbit mAb

Catalog No: #48662

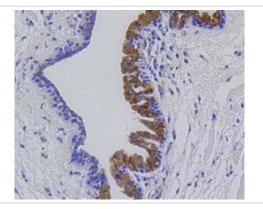
Package Size: #48662-1 50ul #48662-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

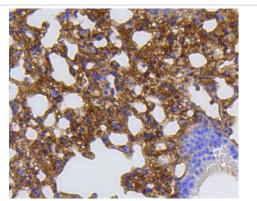

	4.5	
Descri	ntion	١
DUSCH	Puoi	ı

Product Name	MMP12 Rabbit mAb
Host Species	Recombinant Rabbit
Clonality	Monoclonal
Clone No.	SR03-23
Purification	ProA affinity purified
Applications	WB, ICC/IF, IHC, IP, FC
Species Reactivity	Hu, Ms, Rt
Immunogen Description	recombinant protein
Conjugates	Unconjugated
Other Names	EC 3.4.24.65 antibody HME antibody Macrophage elastase antibody Macrophage metalloelastase antibody
	Macrophage metaloelastase antibody Matrix metallopeptidase 12 (macrophage elastase) antibody Matrix
	metalloprotease 12 antibody Matrix metalloproteinase-12 antibody ME antibody MGC138506 antibody MME
	antibody MMP 12 antibody MMP-12 antibody Mmp12 antibody MMP12_HUMAN antibody
Accession No.	Swiss-Prot#:P39900
Calculated MW	54/45/22 kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C

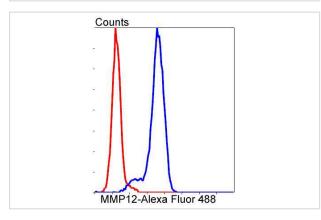
Application Details


WB: 1:1,000-1:2,000 IHC: 1:50-1:200 ICC: 1:50-1:200FC: 1:50-1:100

Images



Western blot analysis of MMP12 on different cell lysates using anti-MMP12 antibody at 1/1,000 dilution. Positive control:


Lane 1: A549 Lane 2: Hela Lane 3: MCF-7 Lane 4: THP-1

Immunohistochemical analysis of paraffin-embedded human breast carcinomna tissue using anti-MMP12 antibody. Counter stained with hematoxylin.

Immunohistochemical analysis of paraffin-embedded mouse lung tissue using anti-MMP12 antibody. Counter stained with hematoxylin.

Flow cytometric analysis of A549 cells with MMP12 antibody at 1/50 dilution (blue) compared with an unlabelled control (cells without incubation with primary antibody; red). Alexa Fluor 488-conjugated goat anti rabbit IgG was used as the secondary antibody.

Background

The matrix metalloproteinases (MMP) are a family of peptidase enzymes responsible for the degradation of extracellular matrix components, including collagen, gelatin, fibronectin, laminin and proteoglycan. Transcription of MMP genes is differentially activated by phorbol ester, lipopolysaccharide (LPS) or staphylococcal enterotoxin B (SEB). MMP catalysis requires both calcium and zinc. MMP-12 (also designated macrophage metalloelastase) is produced in alveolar macrophages and degrades elastin. MMP-12 may contribute to elastin degradation occurring in granulomatous skin diseases and may also participate in macrophage migration through the epidermal and vascular basement membranes in inflammatory disorders.

References

Published Papers

el at., A pyroptosis-related gene signature that predicts immune infiltration and prognosis in colon cancerInFront OncolOn2023 Jul 12byMingjian Wu?1,?Shuai Hao et al..PMID:?37503314, , (2023)

PMID:37503314

Note: This product is for in vitro research use only and is not intended for use in humans or animals.	
The product of the first the recourse and only and to not interface for account furnished animals.	