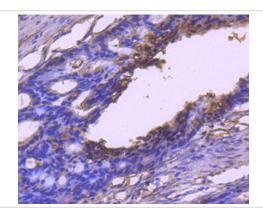
VEGF Rabbit mAb

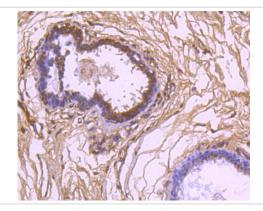
Catalog No: #48707

Package Size: #48707-1 50ul #48707-2 100ul

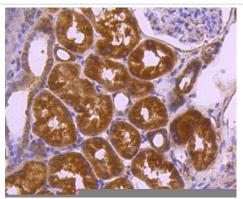
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

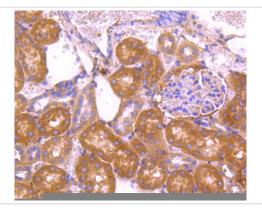

Description

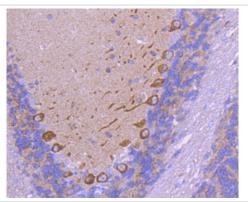
Product Name	VEGF Rabbit mAb
Clonality	Monoclonal
Clone No.	SP07-01
Purification	ProA affinity purified
Applications	ICC/IF, IHC, IP, FC
Species Reactivity	Hu, Ms, Rt
Immunogen Description	recombinant protein
Conjugates	Unconjugated
Other Names	Folliculostellate cell-derived growth factor antibody Glioma-derived endothelial cell mitogen antibody
	MGC70609 antibody MVCD1 antibody Vascular endothelial growth factor A antibody vascular endothelial
	growth factor A121 antibody vascular endothelial growth factor A165 antibody vascular endothelial growth
	factor antibody Vascular permeability factor antibody VEGF A antibody Vegf antibody VEGF-A antibody
	VEGF120 antibody Vegfa antibody VEGFA_HUMAN antibody VPF antibody
Accession No.	Swiss-Prot#:P15692
Calculated MW	43 kDa
Concentration	1 mg/ml
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C

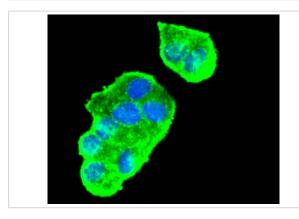

Application Details

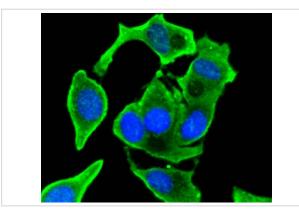
IHC:1:50-1:200 ICC: 1:50-1:200 FC: 1:50-1:100

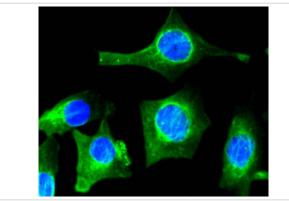

Images

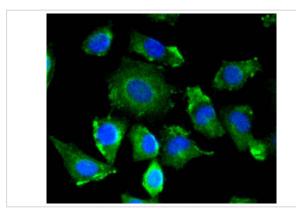

Immunohistochemical analysis of paraffin-embedded human colon cancer tissue using anti-VEGF antibody. Counter stained with hematoxylin.

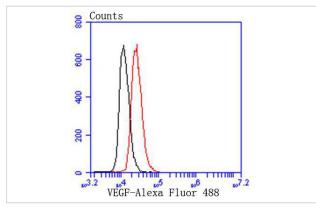

Immunohistochemical analysis of paraffin-embedded human breast carcimoma tissue using anti-VEGF antibody. Counter stained with hematoxylin.


Immunohistochemical analysis of paraffin-embedded human kidney tissue using anti-VEGF antibody. Counter stained with hematoxylin.


Immunohistochemical analysis of paraffin-embedded mouse kidney tissue using anti-VEGF antibody. Counter stained with hematoxylin.


Immunohistochemical analysis of paraffin-embedded mouse cerebellum tissue using anti-VEGF antibody. Counter stained with hematoxylin.


ICC staining VEGF in Hela cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.


ICC staining VEGF in MCF-7 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining VEGF in SHG-44 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining VEGF in SH-SY-5Y cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Flow cytometric analysis of Hela cells with VEGF antibody at 1/50 dilution (red) compared with an unlabelled control (cells without incubation with primary antibody; black). Alexa Fluor 488-conjugated goat anti rabbit IgG was used as the secondary antibody

Background

The onset of angiogenesis is believed to be an early event in tumorigenesis and may facilitate tumor progression and metastasis. Several growth factors with angiogenic activity have been described. These include fibroblast growth factors (FGFs), platelet derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). VEGF is a dimeric glycoprotein with structural homology to PDGF. Several variants of VEGF have been described that arise by alternative mRNA splicing. It has been speculated that VEGF may function as a tumor angiogenesis factor in vivo because the expression pattern of VEGF is consistent with a role in embryonic angiogenesis. VEGF mRNA is formed in some primary tumors, VEGF is produced by tumor cell lines in vitro and VEGF mitogenic activity appears to be restricted to endothelial cells. A member of the PDGF receptor family, Flt, has been identified as a high-affinity receptor for VEGF.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			