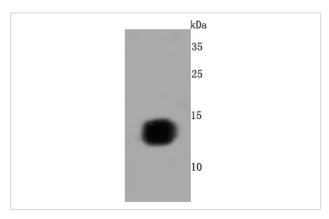
Hemoglobin subunit gamma 1and2 Rabbit mAb

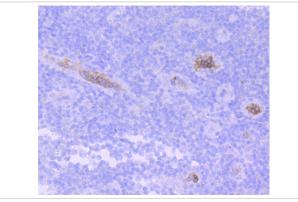
Catalog No: #49459

Package Size: #49459-1 50ul #49459-2 100ul

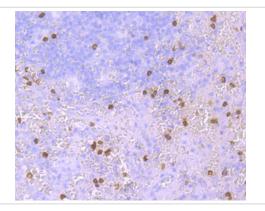
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

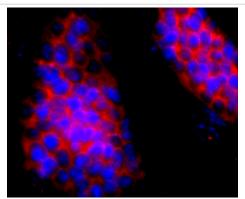

$\overline{}$		4.0	
	escri	nt	ION.
$\boldsymbol{\nu}$	COUL	μι	

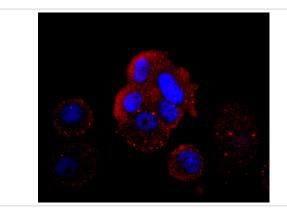
Hemoglobin subunit gamma 1and2 Rabbit mAb
Recombinant Rabbit
Monoclonal
JM84-10
ProA affinity purified
WB, ICC/IF, IHC
Hu
recombinant protein
Unconjugated
Swiss-Prot#:P69891
16 kDa
1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Store at -20°C

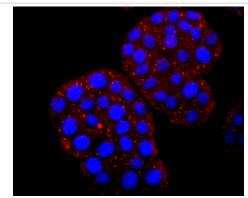

Application Details

WB: 1:1,000-5,000IHC: 1:50-1:200 ICC: 1:50-1:200FC:150-1100


Images


Western blot analysis of HBG1/2 on human placenta (1) and human brain (2) tissue lysates using anti-HBG1/2 antibody at 1/500 dilution.


Immunohistochemical analysis of paraffin-embedded human tonsil tissue using anti-HBG1/2 antibody. Counter stained with hematoxylin.


Immunohistochemical analysis of paraffin-embedded human spleen tissue using anti-HBG1/2 antibody. Counter stained with hematoxylin.

ICC staining HBG1/2 in D3 cells (red). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining HBG1/2 in MCF-7 cells (red). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining HBG1/2 in PC-12 cells (red). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Background

Hemoglobin (Hgb) is coupled to four iron-binding, methene-linked tetrapyrrole rings (heme). The α (16p13.3; 5-ζ-pseudoz-pseudo α 2-pseudo α 1- α 2- α 1-?1-3) and β (11p15.5) globin loci determine the basic hemoglobin structure. The globin portion of hemoglobin consists of two α chains and two β chains arranged in pairs forming a tetramer. Each of the four globin chains covalently associates with a heme group. The bonds between α and β chains are weaker than between similar globin chains, thereby forming a cleavage plane that is important for oxygen binding and release. High affinity for oxygen occurs upon relaxation of the α 1- β 2 cleavage plane. When the two α 1- β 2 interfaces are closely bound, hemoglobin has a low affinity for oxygen. Hb A, which contains two α chains plus two β chains, comprises 97% of total circulating hemoglobin. The remaining 3% of total circulating hemoglobin is comprised of Hb A-2, which consists of two α chains plus two δ chains, and fetal hemoglobin (Hb F), which consists of two α chains

together with two γ chains.

_					
п		rei	_	-	$\overline{}$

Note: This product is for in vitro research use only and is not intended for use in humans or animals.