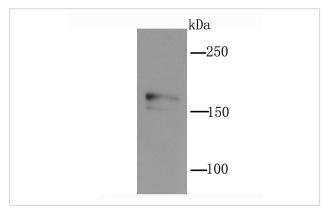
NMDAR2A Rabbit mAb

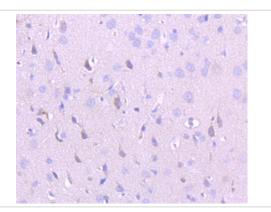
Catalog No: #49584

Package Size: #49584-1 50ul #49584-2 100ul

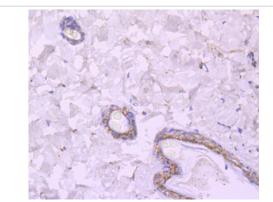
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

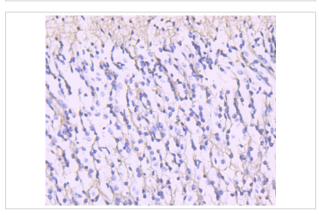

		4.5	
Des	cri	ntic	ı'n
レしこ	ווטפ	ν u ϵ	/I I

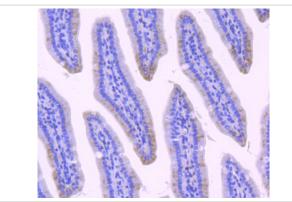
Product Name	NMDAR2A Rabbit mAb
Host Species	Recombinant Rabbit
Clonality	Monoclonal
Clone No.	JA31-20
Purification	ProA affinity purified
Applications	WB, IHC
Species Reactivity	Hu, Ms, Rt
Immunogen Description	recombinant protein
Conjugates	Unconjugated
Other Names	EPND antibody FESD antibody GluN2A antibody Glutamate [NMDA] receptor subunit epsilon-1 antibody
	Glutamate receptor antibody Glutamate receptor ionotropic N methyl D aspartate 2A antibody GRIN 2A
	antibody GRIN2A antibody hNR2A antibody LKS antibody N methyl D aspartate receptor channel, subunit
	epsilon 1 antibody N Methyl D Aspartate Receptor Subtype 2A antibody N methyl D aspartate receptor
	subunit 2A antibody N-methyl D-aspartate receptor subtype 2A antibody NMDA receptor subtype 2A
	antibody NMDAR 2A antibody NMDAR2A antibody NMDE1_HUMAN antibody NR2A antibody
	OTTHUMP00000160135 antibody OTTHUMP00000174531 antibody
Accession No.	Swiss-Prot#:Q12879
Calculated MW	165 kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C


Application Details

WB: 1:500 IHC: 1:50-1:100


Images


Western blot analysis of NMDAR2A on rat brain tissue lysate using anti-NMDAR2A antibody at 1/1,000 dilution.


Immunohistochemical analysis of paraffin-embedded rat brain tissue using anti-NMDAR2A antibody. Counter stained with hematoxylin.

Immunohistochemical analysis of paraffin-embedded rat skin tissue using anti-NMDAR2A antibody. Counter stained with hematoxylin.

Immunohistochemical analysis of paraffin-embedded human brain tissue using anti-NMDAR2A antibody. Counter stained with hematoxylin.

Immunohistochemical analysis of paraffin-embedded mouse small intestine tissue using anti-NMDAR2A antibody. Counter stained with hematoxylin.

Background

NMDAR2A is a member of the glutamate-gated ion channel protein family. The encoded protein is an N-methyl-D-aspartate (NMDA) receptor subunit. NMDA receptors are both ligand-gated and voltage-dependent, and are involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning.

References

Note: This product is for in vitro research use only and is not intended for use in humans or animals.				
The product of the first the recourse and only and to not interface for account furnished animals.				