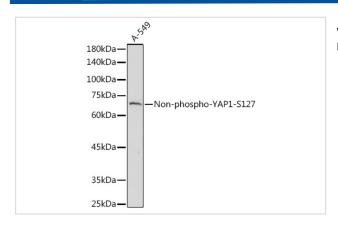
Non-phospho-YAP1-S127 Rabbit Polyclonal Antibody

Catalog No: #54655

Package Size: #54655-1 50ul #54655-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	Non-phospho-YAP1-S127 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC
Species Reactivity	Human,Mouse,Rat
Immunogen Description	A synthetic peptide of human YAP1.
Conjugates	Unconjugated
Other Names	COB1;YAP;YAP2;YAP65;YKI;YAP1
Accession No.	Swiss Prot:P46937Gene ID:10413
Calculated MW	36kDa/48kDa/49kDa/50kDa/52kDa/53kDa/54kDa
SDS-PAGE MW	68KDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:2000 - 1:5000IHC 1:50 - 1:200

Images

Western blot analysis of extracts of A-549 cells, using Non-phospho-YAP1-S127 antibody.

Background

This gene encodes a downstream nuclear effector of the Hippo signaling pathway which is involved in development, growth, repair, and homeostasis. This gene is known to play a role in the development and progression of multiple cancers as a transcriptional regulator of this signaling pathway and may function as a potential target for cancer treatment. Alternative splicing results in multiple transcript variants encoding different isoforms.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		