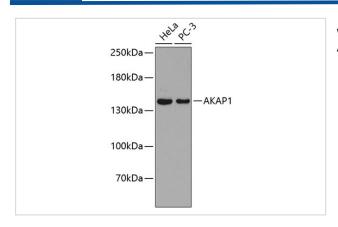
AKAP1 Rabbit Polyclonal Antibody

Catalog No: #54944

Package Size: #54944-1 50ul #54944-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	AKAP1 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human
Immunogen Description	Recombinant fusion protein of human AKAP1 (NP_003479.1).
Conjugates	Unconjugated
Other Names	AKAP1;AKAP;AKAP121;AKAP149;AKAP84;D-AKAP1;PPP1R43;PRKA1;SAKAP84;TDRD17
Accession No.	Swiss Prot:Q92667Gene ID:8165
Calculated MW	62kDa/97kDa
SDS-PAGE MW	135kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB = 1:500 - 1:2000IHC = 1:50 - 1:200IF = 1:50 - 1:200

Images

Western blot analysis of extracts of various cell lines, using AKAP1 antibody.

Background

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. The encoded protein binds to type I and type II regulatory subunits of PKA and anchors them to the mitochondrion. This protein is speculated to be involved in the cAMP-dependent signal transduction pathway and in directing RNA to a specific cellular compartment.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		