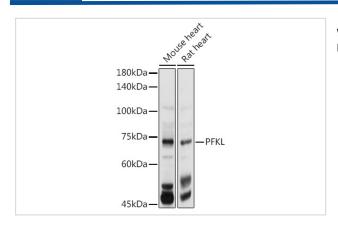
PFKL Rabbit Polyclonal Antibody

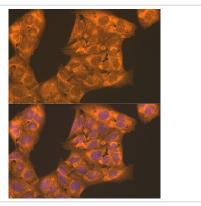
Catalog No: #55290

Package Size: #55290-1 50ul #55290-2 100ul

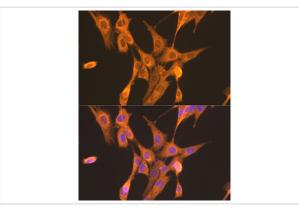
Support: tech@signalwayantibody.com


Description

Product Name	PFKL Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human PFKL (NP_002617.3).
Conjugates	Unconjugated
Other Names	PFKL;ATP-PFK;PFK-B;PFK-L
Accession No.	Uniprot:P17858GeneID:5211
Calculated MW	85kDa/90kDa
SDS-PAGE MW	75KDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB□1:500 - 1:2000IF□1:50 - 1:200


Images

Western blot analysis of extracts of various cell lines, using PFKL antibody.

Immunofluorescence analysis of U2OS cells using PFKL antibody.

Immunofluorescence analysis of NIH/3T3 cells using PFKL antibody.

Background

This gene encodes the liver (L) subunit of an enzyme that catalyzes the conversion of D-fructose 6-phosphate to D-fructose 1,6-bisphosphate, which is a key step in glucose metabolism (glycolysis). This enzyme is a tetramer that may be composed of different subunits encoded by distinct genes in different tissues. Alternative splicing results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.