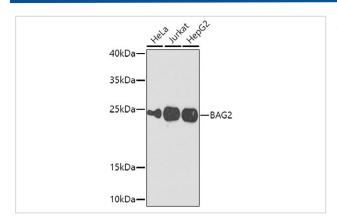
BAG2 Rabbit Polyclonal Antibody

Catalog No: #55323

Package Size: #55323-1 50ul #55323-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	BAG2 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human
Immunogen Description	Recombinant fusion protein of human BAG2 (NP_004273.1).
Conjugates	Unconjugated
Other Names	BAG2;BAG-2;dJ417l1.2
Accession No.	Uniprot:O95816GeneID:9532
Calculated MW	20kDa/23kDa
SDS-PAGE MW	24kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using BAG2 antibody.

Background

BAG proteins compete with Hip for binding to the Hsc70/Hsp70 ATPase domain and promote substrate release. All the BAG proteins have an approximately 45-amino acid BAG domain near the C terminus but differ markedly in their N-terminal regions. The predicted BAG2 protein contains 211 amino acids. The BAG domains of BAG1, BAG2, and BAG3 interact specifically with the Hsc70 ATPase domain in vitro and in mammalian cells. All 3 proteins bind with high affinity to the ATPase domain of Hsc70 and inhibit its chaperone activity in a Hip-repressible manner.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			