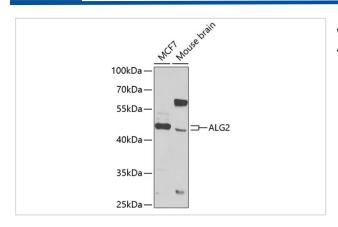
ALG2 Rabbit Polyclonal Antibody

Catalog No: #55343

Package Size: #55343-1 50ul #55343-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	ALG2 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human,Mouse
Immunogen Description	Recombinant fusion protein of human ALG2 (NP_149078.1).
Conjugates	Unconjugated
Other Names	ALG2;CDG1I;CDGIi;CMS14;CMSTA3;NET38;hALPG2;alpha-1;3/1
Accession No.	Uniprot:Q9H553GeneID:85365
Calculated MW	37kDa/47kDa
SDS-PAGE MW	47kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using ALG2 antibody.

Background

This gene encodes a member of the glycosyltransferase 1 family. The encoded protein acts as an alpha 1,3 mannosyltransferase, mannosylating Man(2)GlcNAc(2)-dolichol diphosphate and Man(1)GlcNAc(2)-dolichol diphosphate to form Man(3)GlcNAc(2)-dolichol diphosphate. Defects in this gene have been associated with congenital disorder of glycosylation type Ih (CDG-Ii). Alternative splicing results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		