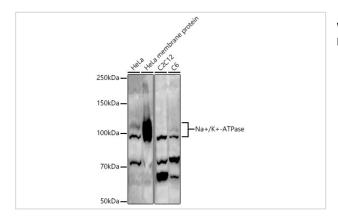
ATP1A1 Rabbit Polyclonal Antibody

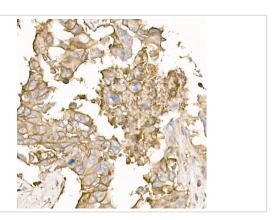
Catalog No: #55357

Package Size: #55357-1 50ul #55357-2 100ul

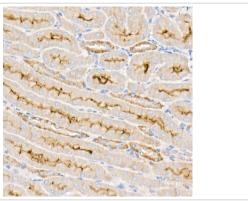
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

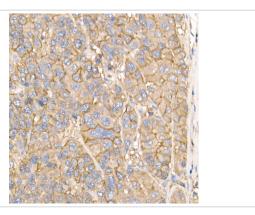

Description

Product Name	ATP1A1 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC
Species Reactivity	Human,Mouse,Rat
Immunogen Description	A synthetic peptide of human Na+/K+-ATPase (NP_000692.2).
Conjugates	Unconjugated
Other Names	ATP1A1;ATPase Na+/K+ transporting subunit alpha 1;ATP1A;CMT2DD;HOMGSMR2
Accession No.	Uniprot:P05023GeneID:476
Calculated MW	74kDa/109kDa/112kDa/113kDa
SDS-PAGE MW	100KDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB = 1:500 - 1:2000IHC = 1:50 - 1:200


Images


Western blot analysis of extracts of various cell lines, using Na+/K+-ATPase antibody.

Immunohistochemistry of paraffin-embedded human lung cancer using Na+/K+-ATPase Rabbit pAb.

Immunohistochemistry of paraffin-embedded mouse kidney using Na+/K+-ATPase Rabbit pAb.

Immunohistochemistry of paraffin-embedded human liver cancer using Na+/K+-ATPase Rabbit pAb.

Background

The protein encoded by this gene belongs to the family of P-type cation transport ATPases, and to the subfamily of Na+/K+ -ATPases. Na+/K+ -ATPase is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These gradients are essential for osmoregulation, for sodium-coupled transport of a variety of organic and inorganic molecules, and for electrical excitability of nerve and muscle. This enzyme is composed of two subunits, a large catalytic subunit (alpha) and a smaller glycoprotein subunit (beta). The catalytic subunit of Na+/K+ -ATPase is encoded by multiple genes. This gene encodes an alpha 1 subunit. Multiple transcript variants encoding different isoforms have been found for this gene.

Published Papers

Huang Shenghui;Xu Zhengyu;Wang Jianhao;Liu Peng;Wang Zhishuo;Ren Yiming;Wan Junming;Feng Shiqing;Shu Tao el at., Macrophage membrane-mediated targeted curcumin biomimetic nanoparticles delivery for diagnosis and treatment of spinal cord injury by suppressing neuroinflammation and ferroptosis, , (2024)

PMID:

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.