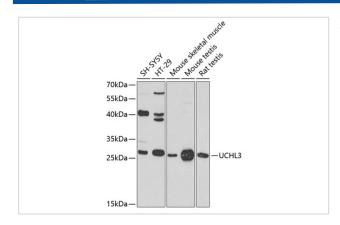
UCHL3 Rabbit Polyclonal Antibody

Catalog No: #55440

Package Size: #55440-1 50ul #55440-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	UCHL3 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human UCHL3 (NP_005993.1).
Conjugates	Unconjugated
Other Names	UCHL3;UCH-L3
Accession No.	Uniprot:P15374GeneID:7347
Calculated MW	26kDa
SDS-PAGE MW	26kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using UCHL3 antibody.

Background

The protein encoded by this gene is a member of the deubiquitinating enzyme family. Members of this family are proteases that catalyze the removal of ubiquitin from polypeptides and are divided into five classes, depending on the mechanism of catalysis. This protein may hydrolyze the ubiquitinyl-N-epsilon amide bond of ubiquitinated proteins to regenerate ubiquitin for another catalytic cycle. Alternative splicing results in multiple transcript variants that encode different protein isoforms.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		