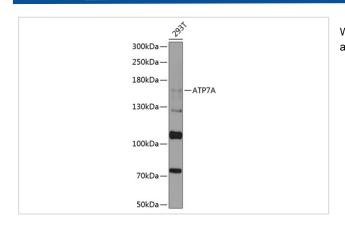
ATP7A Rabbit Polyclonal Antibody

Catalog No: #55499

Package Size: #55499-1 50ul #55499-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	ATP7A Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human,Rat
Immunogen Description	Recombinant fusion protein of human ATP7A (NP_000043.4).
Conjugates	Unconjugated
Other Names	ATP7A;DSMAX;MK;MNK;SMAX3
Accession No.	Uniprot:Q04656GeneID:538
Calculated MW	11kDa/54kDa/154kDa/163kDa/165kDa/172kDa
SDS-PAGE MW	163kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of 293T cells, using ATP7A antibody.

Background

This gene encodes a transmembrane protein that functions in copper transport across membranes. This protein is localized to the trans Golgi network, where it is predicted to supply copper to copper-dependent enzymes in the secretory pathway. It relocalizes to the plasma membrane under conditions of elevated extracellular copper, and functions in the efflux of copper from cells. Mutations in this gene are associated with Menkes disease, X-linked distal spinal muscular atrophy, and occipital horn syndrome. Alternatively-spliced transcript variants have been observed.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		