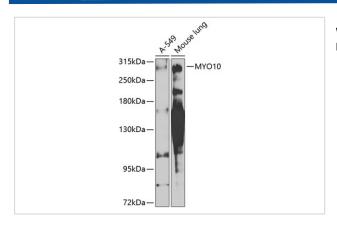
MYO10 Rabbit Polyclonal Antibody

Catalog No: #55516

Package Size: #55516-1 50ul #55516-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	MYO10 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human MYO10 (NP_036466.2).
Conjugates	Unconjugated
Other Names	MYO10;myosin X
Accession No.	Uniprot:Q9HD67GeneID:4651
Calculated MW	11kDa/163kDa/237kDa
SDS-PAGE MW	270kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using MYO10 antibody.

Background

This gene encodes a member of the myosin superfamily. The protein represents an unconventional myosin; it should not be confused with the conventional non-muscle myosin-10 (MYH10). Unconventional myosins contain the basic domains of conventional myosins and are further distinguished from class members by their tail domains. This gene functions as an actin-based molecular motor and plays a role in integration of F-actin and microtubule cytoskeletons during meiosis.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		