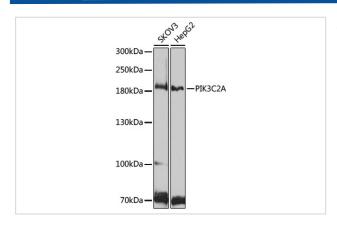
PIK3C2A Rabbit Polyclonal Antibody

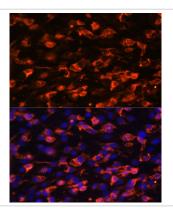
Catalog No: #55532

Package Size: #55532-1 50ul #55532-2 100ul

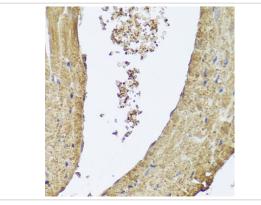
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

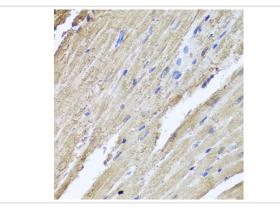

Description

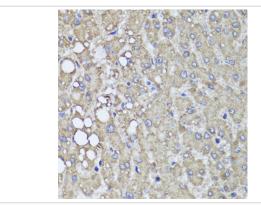
Product Name	PIK3C2A Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human PIK3C2A (NP_002636.2).
Conjugates	Unconjugated
Other Names	PIK3C2A;CPK;PI3-K-C2(ALPHA);PI3-K-C2A;PI3K-C2-alpha;PI3K-C2alpha
Accession No.	Swiss Prot:O00443GeneID:5286
Calculated MW	53kDa/190kDa
SDS-PAGE MW	191kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB 1:500 - 1:2000IHC 1:50 - 1:100IF 1:50 - 1:100IP 1:50 - 1:100


Images


Western blot analysis of extracts of various cell lines, using PIK3C2A at 1:1000 dilution.


Immunofluorescence analysis of C6 cells using PIK3C2A at dilution of 1:100. Blue: DAPI for nuclear staining.

Immunohistochemistry of paraffin-embedded mouse heart using PIK3C2A at dilution of 1:100 (40x lens).

Immunohistochemistry of paraffin-embedded rat heart using PIK3C2A at dilution of 1:100 (40x lens).

Immunohistochemistry of paraffin-embedded human liver damage using PIK3C2A at dilution of 1:100 (40x lens).

Background

The protein encoded by this gene belongs to the phosphoinositide 3-kinase (PI3K) family. PI3-kinases play roles in signaling pathways involved in cell proliferation, oncogenic transformation, cell survival, cell migration, and intracellular protein trafficking. This protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of class II PI3-kinases. C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein interactions. The PI3-kinase activity of this protein is not sensitive to nanomolar levels of the inhibitor wortmanin. This protein was shown to be able to be activated by insulin and may be involved in integrin-dependent signaling.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.