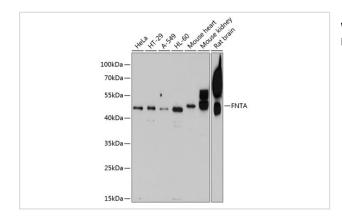
FNTA Rabbit Polyclonal Antibody

Catalog No: #55572

Package Size: #55572-1 50ul #55572-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	FNTA Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human FNTA (NP_002018.1).
Conjugates	Unconjugated
Other Names	FNTA;FPTA;PGGT1A;PTAR2;farnesyltransferase;CAAX box;alpha
Accession No.	Swiss Prot:P49354GeneID:2339
Calculated MW	36kDa/44kDa
SDS-PAGE MW	44kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB□1:500 - 1:2000IF□1:50 - 1:200

Images

Western blot analysis of extracts of various cell lines, using FNTA at 1:1000 dilution.

Background

Prenyltransferases can attach either a farnesyl group or a geranylgeranyl group in thioether linkage to the cysteine residue of proteins with a C-terminal CAAX box. CAAX geranylgeranyltransferase and CAAX farnesyltransferase are heterodimers that share the same alpha subunit but have different beta subunits. This gene encodes the alpha subunit of these transferases. Alternative splicing results in multiple transcript variants. Related pseudogenes have been identified on chromosomes 11 and 13.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		