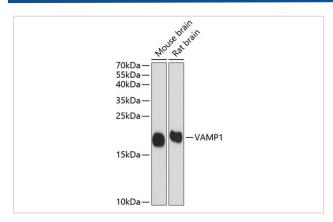
VAMP1 Rabbit Polyclonal Antibody

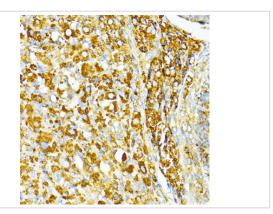
Catalog No: #55576

Package Size: #55576-1 50ul #55576-2 100ul

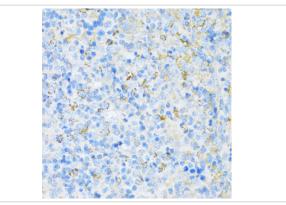
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

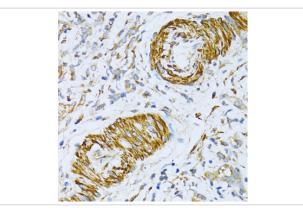

Description

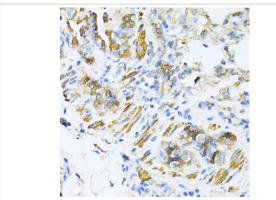
Product Name	VAMP1 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human VAMP1 (NP_954740.1).
Conjugates	Unconjugated
Other Names	VAMP1;SPAX1;SYB1;VAMP-1
Accession No.	Swiss Prot:P23763GeneID:6843
Calculated MW	12kDa
SDS-PAGE MW	17kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB = 1:500 - 1:2000IHC = 1:50 - 1:100IF = 1:50 - 1:100


Images


Western blot analysis of extracts of various cell lines, using VAMP1 at 1:1000 dilution.


Immunohistochemistry of paraffin-embedded rat ovary using VAMP1 at dilution of 1:100 (40x lens).

Immunohistochemistry of paraffin-embedded rat spleen using VAMP1 at dilution of 1:100 (40x lens).

Immunohistochemistry of paraffin-embedded human gastric cancer using VAMP1 at dilution of 1:100 (40x lens).

Immunohistochemistry of paraffin-embedded mouse lung using VAMP1 at dilution of 1:100 (40x lens).

Background

Synapotobrevins, syntaxins, and the synaptosomal-associated protein SNAP25 are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. The protein encoded by this gene is a member of the vesicle-associated membrane protein (VAMP)/synaptobrevin family. Mutations in this gene are associated with autosomal dominant spastic ataxia 1. Multiple alternative splice variants have been described, but the full-length nature of some variants has not been defined.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.