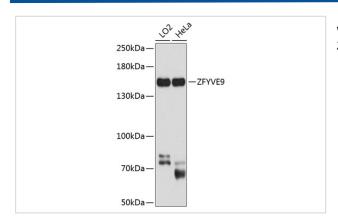
ZFYVE9 Rabbit Polyclonal Antibody

Catalog No: #55582

Package Size: #55582-1 50ul #55582-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	ZFYVE9 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human
Immunogen Description	Recombinant fusion protein of human ZFYVE9 (NP_004790.2).
Conjugates	Unconjugated
Other Names	ZFYVE9;MADHIP;NSP;PPP1R173;SARA;SMADIP
Accession No.	Uniprot:O95405GeneID:9372
Calculated MW	83kDa/150kDa/156kDa
SDS-PAGE MW	156kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:200 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using ZFYVE9 antibody.

Background

This gene encodes a double zinc finger motif-containing protein that participates in the transforming growth factor-beta (TGFB) signalling pathway. The encoded protein interacts directly with SMAD2 and SMAD3, and recruits SMAD2 to the TGFB receptor. There are multiple pseudogenes for this gene on chromosomes 2, 15, and X. Alternative splicing results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		