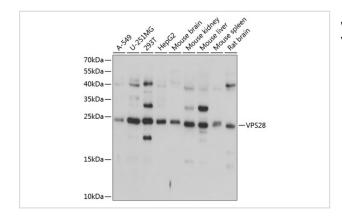
VPS28 Rabbit Polyclonal Antibody

Catalog No: #55587

Package Size: #55587-1 50ul #55587-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	VPS28 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IF
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human VPS28 (NP_057292.1).
Conjugates	Unconjugated
Other Names	VPS28
Accession No.	Swiss Prot:Q9UK41GeneID:51160
Calculated MW	25kDa/26kDa
SDS-PAGE MW	25kDa
Formulation	Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB□1:500 - 1:2000IF□1:50 - 1:200

Images

Western blot analysis of extracts of various cell lines, using VPS28 at 1:1000 dilution.

Background

This gene encodes a protein subunit of the ESCRT-I complex (endosomal complexes required for transport), which functions in the transport and sorting of proteins into subcellular vesicles. This complex can also be hijacked to facilitate the budding of enveloped viruses from the cell membrane. Alternative splicing results in multiple transcript variants encoding different isoforms.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			