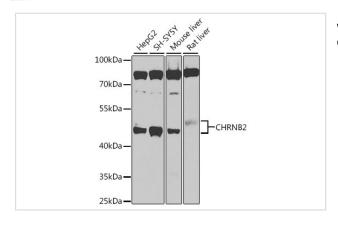
CHRNB2 Rabbit Polyclonal Antibody

Catalog No: #55612

Package Size: #55612-1 50ul #55612-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


D_{cc}	Ori	-	4:0	-
Des	SCI I	Ю	ЩО	

Product Name	CHRNB2 Rabbit Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Human,Mouse,Rat
Immunogen Description	Recombinant fusion protein of human CHRNB2 (NP_000739.1).
Conjugates	Unconjugated
Other Names	CHRNB2;EFNL3;nAChRB2
Accession No.	Uniprot:P17787GeneID:1141
Calculated MW	57kDa
SDS-PAGE MW	50-52kDa
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using CHRNB2 antibody.

Background

Neuronal acetylcholine receptors are homo- or heteropentameric complexes composed of homologous alpha and beta subunits. They belong to a superfamily of ligand-gated ion channels which allow the flow of sodium and potassium across the plasma membrane in response to ligands such as acetylcholine and nicotine. This gene encodes one of several beta subunits. Mutations in this gene are associated with autosomal dominant nocturnal frontal lobe epilepsy.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.					