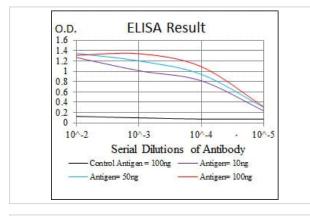
NQO1 Mouse mAb

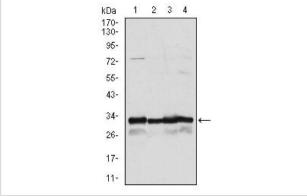
Catalog No: #64018

Package Size: #64018-1 50ul #64018-2 100ul

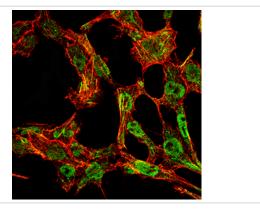
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

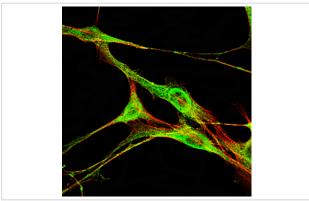

Description

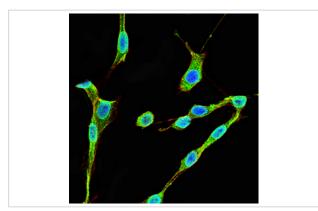
Product Name	NQO1 Mouse mAb
Host Species	Mouse
Clonality	Monoclonal
Isotype	Mouse IgG1
Applications	WB;IF;FC
Species Reactivity	Human,Rat,Monkey
Immunogen Description	Purified recombinant fragment of human NQO1 expressed in E. Coli.
Target Name	NQO1
Other Names	DTD; QR1; DHQU; DIA4; NMOR1; NMORI
Accession No.	P15559
Calculated MW	31kDa
Formulation	Ascitic fluid containing 0.03% sodium azide.
Storage	Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

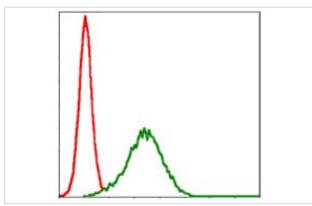

Application Details

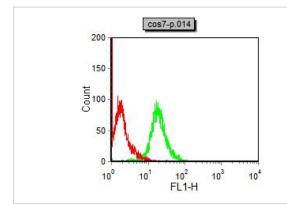
WB:1/500 - 1/2000ICC:1/200 - 1/1000FC:1/200 - 1/400ELISA:1/10000


Images


Black line: Control Antigen (100 ng); Purple line: Antigen(10ng); Blue line: Antigen (50 ng); Red line: Antigen (100 ng);


Western blot analysis using NQO1 mouse mAb against A549 (1), Hela (2), MCF-7 (3) and HepG2 (4) cell lysate.


Immunofluorescence analysis of COS7 cells using NQO1 mouse mAb (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor- 555 phalloidin.


Immunofluorescence analysis of NIH3T3 cells using NQO1 mouse mAb (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor- 555 phalloidin.

Immunofluorescence analysis of C6 cells using NQO1 mouse mAb (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor- 555 phalloidin.

Flow cytometric analysis of HepG2 cells using NQO1 mouse mAb (green) and negative control (red).

Flow cytometric analysis of COS7 cells using NQO1 mouse mAb (green) and negative control (red).

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish as only and is not interface for account name of animals.