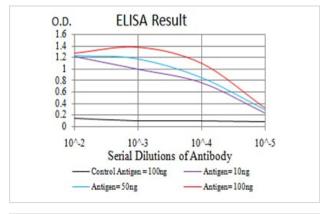
UFD1L Mouse mAb

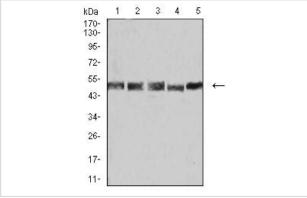
Catalog No: #64383

Package Size: #64383-1 50ul #64383-2 100ul

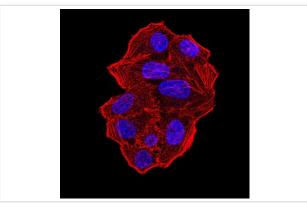
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

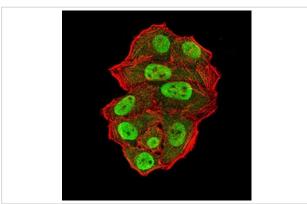

Description

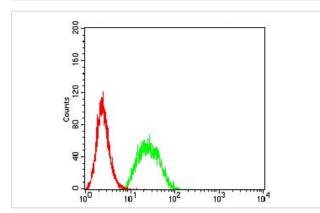
Product Name	UFD1L Mouse mAb
Host Species	Mouse
Clonality	Monoclonal
Isotype	Mouse IgG2b
Applications	WB;IHC;IF;FC
Species Reactivity	Human
Immunogen Description	Purified recombinant fragment of human UFD1L (AA: 208-307) expressed in E. Coli.
Target Name	UFD1L
Other Names	UFD1
Accession No.	Q92890
Calculated MW	34.5kDa
Formulation	Purified antibody in PBS with 0.05% sodium azide
Storage	Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

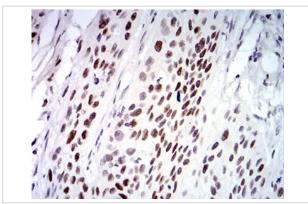

Application Details

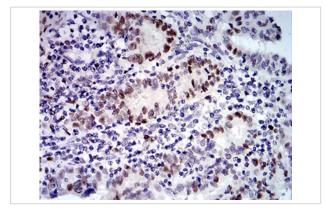
WB:1/500 - 1/2000IHC:1/200 - 1/1000ICC:1/200 - 1/1000FC:1/200 - 1/400ELISA:1/10000


Images


Black line: Control Antigen (100 ng);Purple line: Antigen (10ng); Blue line: Antigen (50 ng); Red line:Antigen (100 ng)


Western blot analysis using UFD1L mouse mAb against K562 (1), Hela (2), A431 (3), PC-2 (4), and A549 (5) cell lysate.


Immunofluorescence analysis of Hela cells using UFD1L mouse mAb. Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor- 555 phalloidin.


Immunofluorescence analysis of Hela cells using UFD1L mouse mAb (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor- 555 phalloidin. Secondary antibody from Fisher (Cat#: 35503)

Flow cytometric analysis of Hela cells using UFD1L mouse mAb (green) and negative control (red).

Immunohistochemical analysis of paraffin-embedded human esophageal cancer tissues using UFD1L mouse mAb with DAB staining.

Immunohistochemical analysis of paraffin-embedded human endometrial cancer tissues using UFD1L mouse mAb with DAB staining.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.