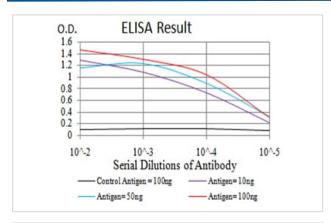
ZFP91 Mouse mAb

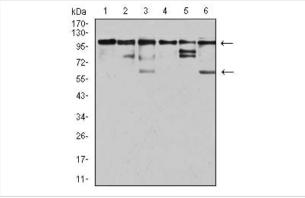
Catalog No: #64428

Package Size: #64428-1 50ul #64428-2 100ul

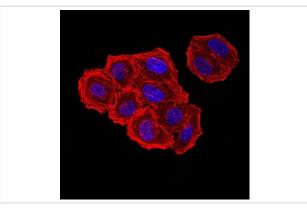
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

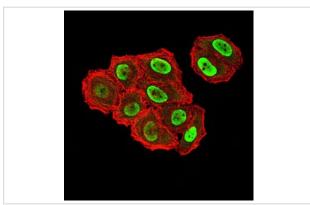

Description

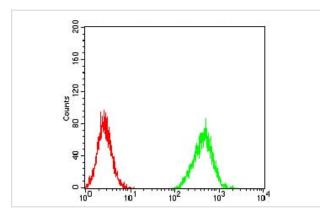
Product Name	ZFP91 Mouse mAb
Host Species	Mouse
Clonality	Monoclonal
Isotype	Mouse IgG1
Applications	WB;IHC;IF;FC
Species Reactivity	Human
Immunogen Description	Purified recombinant fragment of human ZFP91 (AA: 162-304) expressed in E. Coli.
Target Name	ZFP91
Other Names	PZF; DMS-8; DSM-8; FKSG11; ZFP-91; ZNF757
Accession No.	Q96JP5
Calculated MW	63.4kDa
Formulation	Purified antibody in PBS with 0.05% sodium azide
Storage	Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

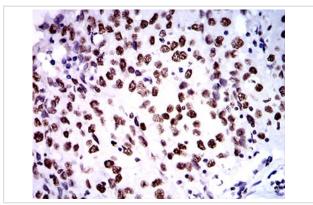

Application Details

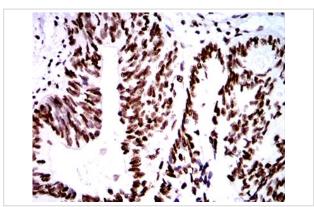
WB:1/500 - 1/2000IHC:1/200 - 1/1000ICC:1/100 - 1/500FC:1/200 - 1/400ELISA:1/10000


Images


Black line: Control Antigen (100 ng);Purple line: Antigen (10ng); Blue line: Antigen (50 ng); Red line:Antigen (100 ng)


Western blot analysis using ZFP91 mouse mAb against Jurkat (1), A431 (2), HepG2 (3), HEK293 (4), A549 (5), and PC-3 (6) cell lysate.


Immunofluorescence analysis of Hela cells using ZFP91 mouse mAb. Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor- 555 phalloidin.


Immunofluorescence analysis of Hela cells using ZFP91 mouse mAb (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor- 555 phalloidin. Secondary antibody from Fisher (Cat#: 35503)

Flow cytometric analysis of Hela cells using ZFP91 mouse mAb (green) and negative control (red).

Immunohistochemical analysis of paraffin-embedded human ovarian cancer tissues using ZFP91 mouse mAb with DAB staining.

Immunohistochemical analysis of paraffin-embedded human rectum cancer tissues using ZFP91 mouse mAb with DAB staining.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.