Product Datasheet

Recombinant Influenza B virus Nucleoprotein(NP)

Catalog No: #AP71154

Package Size: #AP71154-1 20ug #AP71154-2 100ug #AP71154-3 1mg

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

$\overline{}$		4.5
	escri	ntion
-	COUL	

Product Name	Recombinant Influenza B virus Nucleoprotein(NP)
Host Species	E.coli
Purification	Greater than 90% as determined by SDS-PAGE.
Immunogen Description	Expression Region:1-560aaSequence Info:Full Length
Other Names	Nucleocapsid protein ;Protein N
Accession No.	P04665
Calculated MW	77.8 kDa
Tag Info	N-terminal 6xHis-SUMO-tagged
Target Sequence	MSNMDIDSINTGTIDKTPEELTPGTSGATRPIIKPATLAPPSNKRTRNPSPERTTTSSETDIGRKIQKKQTPTEIK
	KSVYKMVVKLGEFYNQMMVKAGLNDDMERNLIQNAQAVERILLAATDDKKTEYQKKRNARDVKEGKEEIDHN
	KTGGTFYKMVRDDKTIYFSPIKITFLKEEVKTMYKTTMGSDGFSGLNHIMIGHSQMNDVCFQRSKGLKRVGLD
	${\tt PSLISTFAGSTLPRRSGTTGVAIKGGGTLVDEAIRFIGRAMADRGLLRDIKAKTAYEKILLNLKNKCSAPQQKALV}$
	${\tt DQVIGSRNPGIADIEDLTLLARSMVVVRPSVASKVVLPISIYAKIPQLGFNTEEYSMVGYEAMALYNMATPVSILR}$
	MGDDAKDKSQLFFMSCFGAAYEDLRVLSALTGTEFKPRSALKCKGFHVPAKEQVEGMGAALMSIKLQFWAP
	${\tt MTRSGGNEVSGEGGSGQISCSPVFAVERPIALSKQAVRRMLSMNVEGRDADVKGNLLKMMNDSMAKKTSG}$
	NAFIGKKMFQISDKNKVNPIEIPIKQTIPNFFFGRDTAEDYDDLDY
Formulation	Tris-based buffer50% glycerol
Storage	The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability
	of the protein itself.
	Generally, the shelf life of liquid form is 6 months at -20°C,-80°C. The shelf life of lyophilized form is 12 months
	at -20°C,-80°C.Notes:Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for
	up to one week.

Background

Encapsidates the negative strand viral RNA, protecting it from nucleases. The encapsidated genomic RNA is termed the ribonucleoprotein (RNP) and serves as tplate for transcription and replication. The RNP needs to be localized in the nucleus to start an infectious cycle, but is too large to diffuse through the nuclear pore complex. NP comprises at least 2 nuclear localization signals and is responsible of the active RNP import into the nucleus through the cellular importin alpha, beta pathway. Later in the infection, nucleus export of RNP are mediated through viral proteins NEP interacting with M1 which binds nucleoproteins. It is possible that the nucleoprotein binds directly exportin-1 (XPO1) and plays an active role in RNP nuclear export. M1 interaction with RNP ses to hide nucleoprotein's nuclear localization signals. Soon after a virion infects a new cell, M1 dissociates from the RNP under acidification of the virion driven by M2 protein. Dissociation of M1 from RNP unmask nucleoprotein's nuclear localization signals, targeting the RNP to the nucleus.

References

Caspase-dependent N-terminal cleavage of influenza virus nucleocapsid protein in infected cells. Zhirnov O.P., Konakova T.E., Garten W., Klenk H.J. Virol. 73:10158-10163(1999)Research Topic:Others

Note: This product is for in vitro research use only and is not intended for use in humans or animals.			