Product Datasheet

Histone H3 (tri methyl K9) Antibody

Catalog No: #HW217

Package Size: #HW217-1 50ul #HW217-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

_		4.6
	escri	ption
_	00011	Puon

Product Name	Histone H3 (tri methyl K9) Antibody
Host Species	Mouse
Clone No.	2G1
Purification	ProA affinity purified
Applications	WB, IF
Species Reactivity	Hu
Immunogen Description	Amino acids 6-16 of Histone H3 trimethylated at Lysine 9 of human origin.
Conjugates	Unconjugated
Accession No.	Swiss-Prot#:P68431
Calculated MW	11kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C

Application Details

WB: 1:100-1:1,000

Background

Eukaryotic histones are basic and water soluble nuclear proteins that form hetero-octameric nucleosome particles by wrapping 146 base pairs of DNA in a left-handed super-helical turn sequentially to form chromosomal fibers. Two molecules of each of the four core histones (H2A, H2B, H3 and H4) form the octamer, which is comprised of two H2A-H2B dimers and two H3-H4 dimers, forming two nearly symmetrical halves by tertiary structure. Histones are subject to posttranslational modification by enzymes primarily on their N-terminal tails, but also in their globular domains. Human Histone H3 is subject to trimethylation at Lys 9, a modification that may be necessary for select DNA transactions or chromatin state transitions.

References

Note: This product is for in vitro research use only and is not intended for use in humans or animals.