Product Datasheet

OGT (Phospho-Ser20) Antibody

Catalog No: #SAB498P

Package Size: #SAB498P-1 50ul #SAB498P-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	OGT (Phospho-Ser20) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were
	purified by affinity-chromatography using epitope-specific peptide.
Applications	Custom antibody
Species Reactivity	Hu Ms
Immunogen Type	Peptide-KLH
Conjugates	Unconjugated
Target Name	OGT
Other Names	UDP-N-acetylglucosaminepeptide N-acetylglucosaminyltransferase 110 kDa subunit
Accession No.	uniprot:O15294
Calculated MW	117kDa
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at $-200\Omega\frac{1}{2}$ o $\Omega\frac{1}{2}$ C for long term preservation (recommended). Store at $40\Omega\frac{1}{2}$ o $\Omega\frac{1}{2}$ C for short term use.

Application Details

Western blotting: 1:500~1:1000

Background

Catalyzes the transfer of a single N-acetylglucosamine from UDP-GlcNAc to a serine or threonine residue in cytoplasmic and nuclear proteins resulting in their modification with a beta-linked N-acetylglucosamine (O-GlcNAc) (PubMed:26678539, PubMed:23103939, PubMed:21240259, PubMed:21285374, PubMed:15361863). Glycosylates a large and diverse number of proteins including histone H2B, AKT1, EZH2, PFKL, KMT2E/MLL5, MAPT/TAU and HCFC1. Can regulate their cellular processes via cross-talk between glycosylation and phosphorylation or by affecting proteolytic processing (PubMed:21285374). Probably by glycosylating KMT2E/MLL5, stabilizes KMT2E/MLL5 by preventing its ubiquitination (PubMed:26678539).

Published Papers

Hongyi Lin; Shuncang Zhu; Yinhao Chen; Jinpeng Lu; Chengke Xie; Chengyu Liao; Xiaoxiao Huang; Ge Li; Yongding Wu; Zhiyuan Li; Jianfei Hu; Xinquan Lin; Yifeng Tian; Qiaowei Li; Zuwei Wang; Shi Chen el at., Targeting cTRIP12 counteracts ferroptosis resistance and augments sensitivity to immunotherapy in pancreatic cancer., (2025)

PMID:40154160

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		