Calmodulin is a ubiquitously expressed small protein mediating many cellular effects such as short-term and long-term memory, nerve growth, inflammation, apoptosis, muscle contraction and intracellular movement (1). Upon binding of four Ca2+ ions, calmodulin undergoes conformational changes, allowing this complex to bind to and activate many enzymes including protein kinases, protein phosphatases, ion channels, Ca2+ pumps, nitric oxide synthase, inositol triphosphate kinase, and cyclic nucleotide phosphodiesterase (2,3). Since calmodulin binds Ca2+ in a cooperative fashion, small changes in cytosolic Ca2+ levels lead to large changes in the level of active calmodulin and its target proteins (4).